Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To simplify the expression [tex]\(4 \log_3 x + 6 \log_3 y - 7 \log_3 z\)[/tex], follow these steps:
1. Apply the Power Rule of Logarithms:
The power rule of logarithms states that [tex]\( n \log_b a = \log_b (a^n) \)[/tex]. Applying this rule to each term in the expression:
[tex]\[ 4 \log_3 x = \log_3 (x^4) \][/tex]
[tex]\[ 6 \log_3 y = \log_3 (y^6) \][/tex]
[tex]\[ 7 \log_3 z = \log_3 (z^7) \][/tex]
2. Rewrite the Expression:
Substitute the simplified logarithmic terms back into the expression:
[tex]\[ \log_3 (x^4) + \log_3 (y^6) - \log_3 (z^7) \][/tex]
3. Apply the Addition Rule of Logarithms:
The addition rule of logarithms states that [tex]\( \log_b (a) + \log_b (c) = \log_b (a \cdot c) \)[/tex]. Combine the first two logarithms:
[tex]\[ \log_3 (x^4) + \log_3 (y^6) = \log_3 (x^4 \cdot y^6) \][/tex]
4. Apply the Subtraction Rule of Logarithms:
The subtraction rule of logarithms states that [tex]\( \log_b (a) - \log_b (c) = \log_b (a / c) \)[/tex]. Combine the results of the addition with the final term:
[tex]\[ \log_3 (x^4 \cdot y^6) - \log_3 (z^7) = \log_3 \left( \frac{x^4 \cdot y^6}{z^7} \right) \][/tex]
Therefore, the simplified form of the expression [tex]\(4 \log_3 x + 6 \log_3 y - 7 \log_3 z\)[/tex] is:
[tex]\[ \log_3 \left( \frac{x^4 \cdot y^6}{z^7} \right) \][/tex]
This corresponds to the given option:
[tex]\(\log_3 \left( \frac{x^4 y^6}{z^7} \right)\)[/tex]
So, the correct answer is:
[tex]\[ \boxed{\log_3 \left( \frac{x^4 y^6}{z^7} \right)} \][/tex]
1. Apply the Power Rule of Logarithms:
The power rule of logarithms states that [tex]\( n \log_b a = \log_b (a^n) \)[/tex]. Applying this rule to each term in the expression:
[tex]\[ 4 \log_3 x = \log_3 (x^4) \][/tex]
[tex]\[ 6 \log_3 y = \log_3 (y^6) \][/tex]
[tex]\[ 7 \log_3 z = \log_3 (z^7) \][/tex]
2. Rewrite the Expression:
Substitute the simplified logarithmic terms back into the expression:
[tex]\[ \log_3 (x^4) + \log_3 (y^6) - \log_3 (z^7) \][/tex]
3. Apply the Addition Rule of Logarithms:
The addition rule of logarithms states that [tex]\( \log_b (a) + \log_b (c) = \log_b (a \cdot c) \)[/tex]. Combine the first two logarithms:
[tex]\[ \log_3 (x^4) + \log_3 (y^6) = \log_3 (x^4 \cdot y^6) \][/tex]
4. Apply the Subtraction Rule of Logarithms:
The subtraction rule of logarithms states that [tex]\( \log_b (a) - \log_b (c) = \log_b (a / c) \)[/tex]. Combine the results of the addition with the final term:
[tex]\[ \log_3 (x^4 \cdot y^6) - \log_3 (z^7) = \log_3 \left( \frac{x^4 \cdot y^6}{z^7} \right) \][/tex]
Therefore, the simplified form of the expression [tex]\(4 \log_3 x + 6 \log_3 y - 7 \log_3 z\)[/tex] is:
[tex]\[ \log_3 \left( \frac{x^4 \cdot y^6}{z^7} \right) \][/tex]
This corresponds to the given option:
[tex]\(\log_3 \left( \frac{x^4 y^6}{z^7} \right)\)[/tex]
So, the correct answer is:
[tex]\[ \boxed{\log_3 \left( \frac{x^4 y^6}{z^7} \right)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.