Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the domain of the function [tex]\((c \cdot d)(x)\)[/tex], defined as the product of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex], where [tex]\(c(x) = \frac{5}{x-2}\)[/tex] and [tex]\(d(x) = x+3\)[/tex], we need to look at the domains of the individual functions and find their intersection.
1. Domain of [tex]\(c(x)\)[/tex]:
- [tex]\(c(x) = \frac{5}{x-2}\)[/tex]
- The expression [tex]\(\frac{5}{x-2}\)[/tex] is defined for all [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex], because the denominator cannot be zero.
- Therefore, the domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Symbolically, this can be expressed as [tex]\(x \in \mathbb{R} \setminus \{2\}\)[/tex].
2. Domain of [tex]\(d(x)\)[/tex]:
- [tex]\(d(x) = x + 3\)[/tex]
- This is a linear function which is defined for all real numbers.
- Hence, the domain of [tex]\(d(x)\)[/tex] is all real numbers, [tex]\(x \in \mathbb{R}\)[/tex].
3. Domain of [tex]\((c \cdot d)(x)\)[/tex]:
- The domain of the product function [tex]\((c \cdot d)(x) = c(x) \cdot d(x)\)[/tex] is the intersection of the domains of [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex].
- The intersection of the domains of [tex]\(c(x) \)[/tex] and [tex]\(d(x)\)[/tex] would be all real numbers except [tex]\(x = 2\)[/tex], since this is the only value at which [tex]\(c(x)\)[/tex] is undefined.
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Therefore, the domain of [tex]\((c \cdot d)(x)\)[/tex] can be expressed as:
[tex]\[ x \in \mathbb{R} \setminus \{2\}. \][/tex]
This concludes that the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
1. Domain of [tex]\(c(x)\)[/tex]:
- [tex]\(c(x) = \frac{5}{x-2}\)[/tex]
- The expression [tex]\(\frac{5}{x-2}\)[/tex] is defined for all [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex], because the denominator cannot be zero.
- Therefore, the domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Symbolically, this can be expressed as [tex]\(x \in \mathbb{R} \setminus \{2\}\)[/tex].
2. Domain of [tex]\(d(x)\)[/tex]:
- [tex]\(d(x) = x + 3\)[/tex]
- This is a linear function which is defined for all real numbers.
- Hence, the domain of [tex]\(d(x)\)[/tex] is all real numbers, [tex]\(x \in \mathbb{R}\)[/tex].
3. Domain of [tex]\((c \cdot d)(x)\)[/tex]:
- The domain of the product function [tex]\((c \cdot d)(x) = c(x) \cdot d(x)\)[/tex] is the intersection of the domains of [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex].
- The intersection of the domains of [tex]\(c(x) \)[/tex] and [tex]\(d(x)\)[/tex] would be all real numbers except [tex]\(x = 2\)[/tex], since this is the only value at which [tex]\(c(x)\)[/tex] is undefined.
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Therefore, the domain of [tex]\((c \cdot d)(x)\)[/tex] can be expressed as:
[tex]\[ x \in \mathbb{R} \setminus \{2\}. \][/tex]
This concludes that the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.