Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the domain of the function [tex]\((c \cdot d)(x)\)[/tex], defined as the product of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex], where [tex]\(c(x) = \frac{5}{x-2}\)[/tex] and [tex]\(d(x) = x+3\)[/tex], we need to look at the domains of the individual functions and find their intersection.
1. Domain of [tex]\(c(x)\)[/tex]:
- [tex]\(c(x) = \frac{5}{x-2}\)[/tex]
- The expression [tex]\(\frac{5}{x-2}\)[/tex] is defined for all [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex], because the denominator cannot be zero.
- Therefore, the domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Symbolically, this can be expressed as [tex]\(x \in \mathbb{R} \setminus \{2\}\)[/tex].
2. Domain of [tex]\(d(x)\)[/tex]:
- [tex]\(d(x) = x + 3\)[/tex]
- This is a linear function which is defined for all real numbers.
- Hence, the domain of [tex]\(d(x)\)[/tex] is all real numbers, [tex]\(x \in \mathbb{R}\)[/tex].
3. Domain of [tex]\((c \cdot d)(x)\)[/tex]:
- The domain of the product function [tex]\((c \cdot d)(x) = c(x) \cdot d(x)\)[/tex] is the intersection of the domains of [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex].
- The intersection of the domains of [tex]\(c(x) \)[/tex] and [tex]\(d(x)\)[/tex] would be all real numbers except [tex]\(x = 2\)[/tex], since this is the only value at which [tex]\(c(x)\)[/tex] is undefined.
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Therefore, the domain of [tex]\((c \cdot d)(x)\)[/tex] can be expressed as:
[tex]\[ x \in \mathbb{R} \setminus \{2\}. \][/tex]
This concludes that the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
1. Domain of [tex]\(c(x)\)[/tex]:
- [tex]\(c(x) = \frac{5}{x-2}\)[/tex]
- The expression [tex]\(\frac{5}{x-2}\)[/tex] is defined for all [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex], because the denominator cannot be zero.
- Therefore, the domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Symbolically, this can be expressed as [tex]\(x \in \mathbb{R} \setminus \{2\}\)[/tex].
2. Domain of [tex]\(d(x)\)[/tex]:
- [tex]\(d(x) = x + 3\)[/tex]
- This is a linear function which is defined for all real numbers.
- Hence, the domain of [tex]\(d(x)\)[/tex] is all real numbers, [tex]\(x \in \mathbb{R}\)[/tex].
3. Domain of [tex]\((c \cdot d)(x)\)[/tex]:
- The domain of the product function [tex]\((c \cdot d)(x) = c(x) \cdot d(x)\)[/tex] is the intersection of the domains of [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex].
- The intersection of the domains of [tex]\(c(x) \)[/tex] and [tex]\(d(x)\)[/tex] would be all real numbers except [tex]\(x = 2\)[/tex], since this is the only value at which [tex]\(c(x)\)[/tex] is undefined.
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex]. Therefore, the domain of [tex]\((c \cdot d)(x)\)[/tex] can be expressed as:
[tex]\[ x \in \mathbb{R} \setminus \{2\}. \][/tex]
This concludes that the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.