Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve this problem step-by-step using the principles of physics, specifically the equations of motion under gravity.
Given:
- The height ([tex]\(h\)[/tex]) from which the object is dropped is [tex]\(1000\)[/tex] feet.
- The acceleration due to gravity ([tex]\(g\)[/tex]) is [tex]\(32.2 \, \text{ft/s}^2\)[/tex].
We will use the kinematic equation for objects in free fall:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
Here:
- [tex]\(v\)[/tex] is the final velocity of the object.
- [tex]\(u\)[/tex] is the initial velocity (which is [tex]\(0\)[/tex] since the object is dropped).
- [tex]\(g\)[/tex] is the acceleration due to gravity.
- [tex]\(h\)[/tex] is the height from which the object is dropped.
Since the object is dropped from rest:
[tex]\[ u = 0 \][/tex]
Substituting this into the equation, we get:
[tex]\[ v^2 = 0^2 + 2gh \][/tex]
[tex]\[ v^2 = 2gh \][/tex]
Now, let's plug in the given values:
[tex]\[ v^2 = 2 \cdot 32.2 \cdot 1000 \][/tex]
So:
[tex]\[ v^2 = 64400 \][/tex]
To find [tex]\(v\)[/tex], we take the square root of both sides:
[tex]\[ v = \sqrt{64400} \][/tex]
The value of [tex]\(\sqrt{64400}\)[/tex] is approximately [tex]\(253.77 \, \text{ft/s}\)[/tex].
Therefore, the speed of the object when it reaches the ground is approximately [tex]\(\boxed{253.77 \, \text{ft/s}}\)[/tex].
Given:
- The height ([tex]\(h\)[/tex]) from which the object is dropped is [tex]\(1000\)[/tex] feet.
- The acceleration due to gravity ([tex]\(g\)[/tex]) is [tex]\(32.2 \, \text{ft/s}^2\)[/tex].
We will use the kinematic equation for objects in free fall:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
Here:
- [tex]\(v\)[/tex] is the final velocity of the object.
- [tex]\(u\)[/tex] is the initial velocity (which is [tex]\(0\)[/tex] since the object is dropped).
- [tex]\(g\)[/tex] is the acceleration due to gravity.
- [tex]\(h\)[/tex] is the height from which the object is dropped.
Since the object is dropped from rest:
[tex]\[ u = 0 \][/tex]
Substituting this into the equation, we get:
[tex]\[ v^2 = 0^2 + 2gh \][/tex]
[tex]\[ v^2 = 2gh \][/tex]
Now, let's plug in the given values:
[tex]\[ v^2 = 2 \cdot 32.2 \cdot 1000 \][/tex]
So:
[tex]\[ v^2 = 64400 \][/tex]
To find [tex]\(v\)[/tex], we take the square root of both sides:
[tex]\[ v = \sqrt{64400} \][/tex]
The value of [tex]\(\sqrt{64400}\)[/tex] is approximately [tex]\(253.77 \, \text{ft/s}\)[/tex].
Therefore, the speed of the object when it reaches the ground is approximately [tex]\(\boxed{253.77 \, \text{ft/s}}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.