Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the slope of the line segment connecting points [tex]\( G(-2, 6) \)[/tex] and [tex]\( H(5, -3) \)[/tex], we will follow these steps:
1. Identify the coordinates of the two points:
- Point [tex]\( G \)[/tex] has coordinates [tex]\( (-2, 6) \)[/tex].
- Point [tex]\( H \)[/tex] has coordinates [tex]\( (5, -3) \)[/tex].
2. Calculate the difference in the y-coordinates (Δy):
- [tex]\( \Delta y = y_2 - y_1 \)[/tex]
- Here, [tex]\( y_1 = 6 \)[/tex] (from point [tex]\( G \)[/tex]) and [tex]\( y_2 = -3 \)[/tex] (from point [tex]\( H \)[/tex]).
- [tex]\( \Delta y = -3 - 6 \)[/tex]
- [tex]\( \Delta y = -9 \)[/tex]
3. Calculate the difference in the x-coordinates (Δx):
- [tex]\( \Delta x = x_2 - x_1 \)[/tex]
- Here, [tex]\( x_1 = -2 \)[/tex] (from point [tex]\( G \)[/tex]) and [tex]\( x_2 = 5 \)[/tex] (from point [tex]\( H \)[/tex]).
- [tex]\( \Delta x = 5 - (-2) \)[/tex]
- [tex]\( \Delta x = 5 + 2 \)[/tex]
- [tex]\( \Delta x = 7 \)[/tex]
4. Calculate the slope (m):
- The slope formula is given by [tex]\( m = \frac{\Delta y}{\Delta x} \)[/tex]
- Substitute the values for [tex]\( \Delta y \)[/tex] and [tex]\( \Delta x \)[/tex]:
- [tex]\( m = \frac{-9}{7} \)[/tex]
- The slope [tex]\( m \)[/tex] can be approximated as [tex]\( -1.2857142857142858 \)[/tex]
Thus, the detailed step-by-step computation for the slope of line segment GH using points [tex]\( G(-2, 6) \)[/tex] and [tex]\( H(5, -3) \)[/tex] yields the slope approximately equal to [tex]\( -1.2857142857142858 \)[/tex].
1. Identify the coordinates of the two points:
- Point [tex]\( G \)[/tex] has coordinates [tex]\( (-2, 6) \)[/tex].
- Point [tex]\( H \)[/tex] has coordinates [tex]\( (5, -3) \)[/tex].
2. Calculate the difference in the y-coordinates (Δy):
- [tex]\( \Delta y = y_2 - y_1 \)[/tex]
- Here, [tex]\( y_1 = 6 \)[/tex] (from point [tex]\( G \)[/tex]) and [tex]\( y_2 = -3 \)[/tex] (from point [tex]\( H \)[/tex]).
- [tex]\( \Delta y = -3 - 6 \)[/tex]
- [tex]\( \Delta y = -9 \)[/tex]
3. Calculate the difference in the x-coordinates (Δx):
- [tex]\( \Delta x = x_2 - x_1 \)[/tex]
- Here, [tex]\( x_1 = -2 \)[/tex] (from point [tex]\( G \)[/tex]) and [tex]\( x_2 = 5 \)[/tex] (from point [tex]\( H \)[/tex]).
- [tex]\( \Delta x = 5 - (-2) \)[/tex]
- [tex]\( \Delta x = 5 + 2 \)[/tex]
- [tex]\( \Delta x = 7 \)[/tex]
4. Calculate the slope (m):
- The slope formula is given by [tex]\( m = \frac{\Delta y}{\Delta x} \)[/tex]
- Substitute the values for [tex]\( \Delta y \)[/tex] and [tex]\( \Delta x \)[/tex]:
- [tex]\( m = \frac{-9}{7} \)[/tex]
- The slope [tex]\( m \)[/tex] can be approximated as [tex]\( -1.2857142857142858 \)[/tex]
Thus, the detailed step-by-step computation for the slope of line segment GH using points [tex]\( G(-2, 6) \)[/tex] and [tex]\( H(5, -3) \)[/tex] yields the slope approximately equal to [tex]\( -1.2857142857142858 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.