Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the step where Marta incorrectly applied a property of logarithms, let's analyze the given steps in simplifying the expression [tex]\( 4 \log _5 x + \log _5 2 x - \log _5 3 x \)[/tex].
The given steps are:
1. [tex]\( 4 \log _5 x + \log _5 2 x - \log _5 3 x \)[/tex]
2. Step 1: [tex]\( = \log _5 4 x + \log _5 2 x - \log _5 3 x \)[/tex]
3. Step 2: [tex]\( = \log _5 8 x^2 - \log _5 3 x \)[/tex]
4. Step 3: [tex]\( = \log _5 \left( \frac{8 x^2}{3 x} \right) \)[/tex]
5. Step 4: [tex]\( = \log _5 \left( \frac{8}{3} x \right) \)[/tex]
Let's go through each step to find the mistake:
Step 1: [tex]\( 4 \log _5 x \)[/tex] is a term in the expression.
Originally:
[tex]\[ 4 \log _5 x + \log _5 2 x - \log _5 3 x \][/tex]
Marta wrote in Step 1:
[tex]\[ \log _5 4 x + \log _5 2 x - \log _5 3 x \][/tex]
Let's compare Step 1 with the original expression:
- [tex]\(4 \log _5 x \)[/tex] should be left as [tex]\(4 \log _5 x \)[/tex] (since multiplying within the logarithm is incorrect here)
The mistake is in Step 1, where Marta turned [tex]\( 4 \log _5 x \)[/tex] into [tex]\( \log _5 4 x \)[/tex], which is incorrect. The correct simplification should have maintained the term [tex]\( 4 \log _5 x \)[/tex].
Thus, the incorrect application of a logarithm property is at Step 1.
The given steps are:
1. [tex]\( 4 \log _5 x + \log _5 2 x - \log _5 3 x \)[/tex]
2. Step 1: [tex]\( = \log _5 4 x + \log _5 2 x - \log _5 3 x \)[/tex]
3. Step 2: [tex]\( = \log _5 8 x^2 - \log _5 3 x \)[/tex]
4. Step 3: [tex]\( = \log _5 \left( \frac{8 x^2}{3 x} \right) \)[/tex]
5. Step 4: [tex]\( = \log _5 \left( \frac{8}{3} x \right) \)[/tex]
Let's go through each step to find the mistake:
Step 1: [tex]\( 4 \log _5 x \)[/tex] is a term in the expression.
Originally:
[tex]\[ 4 \log _5 x + \log _5 2 x - \log _5 3 x \][/tex]
Marta wrote in Step 1:
[tex]\[ \log _5 4 x + \log _5 2 x - \log _5 3 x \][/tex]
Let's compare Step 1 with the original expression:
- [tex]\(4 \log _5 x \)[/tex] should be left as [tex]\(4 \log _5 x \)[/tex] (since multiplying within the logarithm is incorrect here)
The mistake is in Step 1, where Marta turned [tex]\( 4 \log _5 x \)[/tex] into [tex]\( \log _5 4 x \)[/tex], which is incorrect. The correct simplification should have maintained the term [tex]\( 4 \log _5 x \)[/tex].
Thus, the incorrect application of a logarithm property is at Step 1.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.