Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the cost function for Jenna's clothing store per month, we need to account for both the variable costs (the costs that depend on the number of [tex]$T$[/tex]-shirts sold) and the fixed costs (the costs that do not depend on the number of [tex]$T$[/tex]-shirts sold).
Let's break down the costs:
1. Variable costs per [tex]$T$[/tex]-shirt:
- Cost per shirt: [tex]$\$[/tex]7[tex]$ - Cost for ink per shirt: $[/tex]\[tex]$2$[/tex]
- Cost for a bag per shirt: [tex]$\$[/tex]0.10[tex]$ Adding these together, the total variable cost per shirt is: \[ 7 + 2 + 0.10 = 9.10 \] 2. Fixed costs per month: - Rent: $[/tex]\[tex]$500$[/tex]
- Electricity: [tex]$\$[/tex]40[tex]$ - Advertising: $[/tex]\[tex]$30$[/tex]
Adding these together, the total fixed costs per month are:
[tex]\[ 500 + 40 + 30 = 570 \][/tex]
Now, the cost function, [tex]\( C \)[/tex], which gives the total monthly cost depending on the number of [tex]$T$[/tex]-shirts sold [tex]\( n \)[/tex], can be constructed as follows:
[tex]\[ C(t) = (\text{variable cost per shirt} \times \text{number of shirts}) + \text{fixed costs} \][/tex]
[tex]\[ C(t) = (9.10n) + 570 \][/tex]
So, the correct answer is:
D. [tex]\( C = 9.10n + 570 \)[/tex]
Let's break down the costs:
1. Variable costs per [tex]$T$[/tex]-shirt:
- Cost per shirt: [tex]$\$[/tex]7[tex]$ - Cost for ink per shirt: $[/tex]\[tex]$2$[/tex]
- Cost for a bag per shirt: [tex]$\$[/tex]0.10[tex]$ Adding these together, the total variable cost per shirt is: \[ 7 + 2 + 0.10 = 9.10 \] 2. Fixed costs per month: - Rent: $[/tex]\[tex]$500$[/tex]
- Electricity: [tex]$\$[/tex]40[tex]$ - Advertising: $[/tex]\[tex]$30$[/tex]
Adding these together, the total fixed costs per month are:
[tex]\[ 500 + 40 + 30 = 570 \][/tex]
Now, the cost function, [tex]\( C \)[/tex], which gives the total monthly cost depending on the number of [tex]$T$[/tex]-shirts sold [tex]\( n \)[/tex], can be constructed as follows:
[tex]\[ C(t) = (\text{variable cost per shirt} \times \text{number of shirts}) + \text{fixed costs} \][/tex]
[tex]\[ C(t) = (9.10n) + 570 \][/tex]
So, the correct answer is:
D. [tex]\( C = 9.10n + 570 \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.