Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine whether the given table represents a function, we need to understand the definition of a function in mathematics. A function from set [tex]\( X \)[/tex] to set [tex]\( Y \)[/tex] allocates each element in [tex]\( X \)[/tex] to exactly one element in [tex]\( Y \)[/tex]. Essentially, an [tex]\( x \)[/tex]-value should have exactly one corresponding [tex]\( y \)[/tex]-value.
Let's examine the given table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 1 \\ \hline 2 & 4 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline 5 & 5 \\ \hline \end{array} \][/tex]
Look at the [tex]\( x \)[/tex]-values and their corresponding [tex]\( y \)[/tex]-values:
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 3 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 4 \)[/tex] maps to [tex]\( y = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex] maps to [tex]\( y = 5 \)[/tex]
We can observe that the [tex]\( x \)[/tex]-value 2 maps to two different [tex]\( y \)[/tex]-values: 1 and 4.
According to the definition of a function, this violates the requirement that each [tex]\( x \)[/tex]-value must correspond to exactly one [tex]\( y \)[/tex]-value. Because there is at least one [tex]\( x \)[/tex]-value that maps to more than one [tex]\( y \)[/tex]-value, the given table does not represent a function.
Therefore, the correct answer is:
A. No, because one [tex]\( x \)[/tex]-value corresponds to two different [tex]\( y \)[/tex]-values.
Let's examine the given table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 1 \\ \hline 2 & 4 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline 5 & 5 \\ \hline \end{array} \][/tex]
Look at the [tex]\( x \)[/tex]-values and their corresponding [tex]\( y \)[/tex]-values:
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 3 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 4 \)[/tex] maps to [tex]\( y = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex] maps to [tex]\( y = 5 \)[/tex]
We can observe that the [tex]\( x \)[/tex]-value 2 maps to two different [tex]\( y \)[/tex]-values: 1 and 4.
According to the definition of a function, this violates the requirement that each [tex]\( x \)[/tex]-value must correspond to exactly one [tex]\( y \)[/tex]-value. Because there is at least one [tex]\( x \)[/tex]-value that maps to more than one [tex]\( y \)[/tex]-value, the given table does not represent a function.
Therefore, the correct answer is:
A. No, because one [tex]\( x \)[/tex]-value corresponds to two different [tex]\( y \)[/tex]-values.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.