Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the given table represents a function, we need to understand the definition of a function in mathematics. A function from set [tex]\( X \)[/tex] to set [tex]\( Y \)[/tex] allocates each element in [tex]\( X \)[/tex] to exactly one element in [tex]\( Y \)[/tex]. Essentially, an [tex]\( x \)[/tex]-value should have exactly one corresponding [tex]\( y \)[/tex]-value.
Let's examine the given table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 1 \\ \hline 2 & 4 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline 5 & 5 \\ \hline \end{array} \][/tex]
Look at the [tex]\( x \)[/tex]-values and their corresponding [tex]\( y \)[/tex]-values:
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 3 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 4 \)[/tex] maps to [tex]\( y = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex] maps to [tex]\( y = 5 \)[/tex]
We can observe that the [tex]\( x \)[/tex]-value 2 maps to two different [tex]\( y \)[/tex]-values: 1 and 4.
According to the definition of a function, this violates the requirement that each [tex]\( x \)[/tex]-value must correspond to exactly one [tex]\( y \)[/tex]-value. Because there is at least one [tex]\( x \)[/tex]-value that maps to more than one [tex]\( y \)[/tex]-value, the given table does not represent a function.
Therefore, the correct answer is:
A. No, because one [tex]\( x \)[/tex]-value corresponds to two different [tex]\( y \)[/tex]-values.
Let's examine the given table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 1 \\ \hline 2 & 4 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline 5 & 5 \\ \hline \end{array} \][/tex]
Look at the [tex]\( x \)[/tex]-values and their corresponding [tex]\( y \)[/tex]-values:
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 3 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 4 \)[/tex] maps to [tex]\( y = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex] maps to [tex]\( y = 5 \)[/tex]
We can observe that the [tex]\( x \)[/tex]-value 2 maps to two different [tex]\( y \)[/tex]-values: 1 and 4.
According to the definition of a function, this violates the requirement that each [tex]\( x \)[/tex]-value must correspond to exactly one [tex]\( y \)[/tex]-value. Because there is at least one [tex]\( x \)[/tex]-value that maps to more than one [tex]\( y \)[/tex]-value, the given table does not represent a function.
Therefore, the correct answer is:
A. No, because one [tex]\( x \)[/tex]-value corresponds to two different [tex]\( y \)[/tex]-values.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.