Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether the given table represents a function, we need to understand the definition of a function in mathematics. A function from set [tex]\( X \)[/tex] to set [tex]\( Y \)[/tex] allocates each element in [tex]\( X \)[/tex] to exactly one element in [tex]\( Y \)[/tex]. Essentially, an [tex]\( x \)[/tex]-value should have exactly one corresponding [tex]\( y \)[/tex]-value.
Let's examine the given table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 1 \\ \hline 2 & 4 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline 5 & 5 \\ \hline \end{array} \][/tex]
Look at the [tex]\( x \)[/tex]-values and their corresponding [tex]\( y \)[/tex]-values:
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 3 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 4 \)[/tex] maps to [tex]\( y = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex] maps to [tex]\( y = 5 \)[/tex]
We can observe that the [tex]\( x \)[/tex]-value 2 maps to two different [tex]\( y \)[/tex]-values: 1 and 4.
According to the definition of a function, this violates the requirement that each [tex]\( x \)[/tex]-value must correspond to exactly one [tex]\( y \)[/tex]-value. Because there is at least one [tex]\( x \)[/tex]-value that maps to more than one [tex]\( y \)[/tex]-value, the given table does not represent a function.
Therefore, the correct answer is:
A. No, because one [tex]\( x \)[/tex]-value corresponds to two different [tex]\( y \)[/tex]-values.
Let's examine the given table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 1 \\ \hline 2 & 4 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline 5 & 5 \\ \hline \end{array} \][/tex]
Look at the [tex]\( x \)[/tex]-values and their corresponding [tex]\( y \)[/tex]-values:
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 3 \)[/tex] maps to [tex]\( y = 4 \)[/tex]
- [tex]\( x = 4 \)[/tex] maps to [tex]\( y = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex] maps to [tex]\( y = 5 \)[/tex]
We can observe that the [tex]\( x \)[/tex]-value 2 maps to two different [tex]\( y \)[/tex]-values: 1 and 4.
According to the definition of a function, this violates the requirement that each [tex]\( x \)[/tex]-value must correspond to exactly one [tex]\( y \)[/tex]-value. Because there is at least one [tex]\( x \)[/tex]-value that maps to more than one [tex]\( y \)[/tex]-value, the given table does not represent a function.
Therefore, the correct answer is:
A. No, because one [tex]\( x \)[/tex]-value corresponds to two different [tex]\( y \)[/tex]-values.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.