Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's determine the radius of the base of the cone given the volume and the height.
### Step-by-Step Solution:
1. Given Information:
- Volume of the cone: [tex]\( V = 3 \pi x^3 \)[/tex] cubic units
- Height of the cone: [tex]\( h = x \)[/tex] units
2. Formula of the Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone is given by the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius of the base and [tex]\( h \)[/tex] is the height of the cone.
3. Substitute the Given Values:
- Substitute [tex]\( V = 3 \pi x^3 \)[/tex] and [tex]\( h = x \)[/tex] into the formula:
[tex]\[ 3 \pi x^3 = \frac{1}{3} \pi r^2 x \][/tex]
4. Simplify the Equation:
- Multiply both sides by 3 to eliminate the fraction:
[tex]\[ 9 \pi x^3 = \pi r^2 x \][/tex]
- Divide both sides by [tex]\( \pi \)[/tex] to cancel [tex]\( \pi \)[/tex]:
[tex]\[ 9 x^3 = r^2 x \][/tex]
5. Solve for [tex]\( r \)[/tex]:
- Divide both sides by [tex]\( x \)[/tex] (assuming [tex]\( x \neq 0 \)[/tex]):
[tex]\[ 9 x^2 = r^2 \][/tex]
- Take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{9 x^2} \][/tex]
6. Simplify the Square Root:
[tex]\[ r = 3 x \][/tex]
### Conclusion:
The radius of the base of the cone is [tex]\( 3 x \)[/tex] units.
So, the correct choice is:
[tex]\[ 3 x \][/tex]
The answer is [tex]\( 3 x \)[/tex].
### Step-by-Step Solution:
1. Given Information:
- Volume of the cone: [tex]\( V = 3 \pi x^3 \)[/tex] cubic units
- Height of the cone: [tex]\( h = x \)[/tex] units
2. Formula of the Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone is given by the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius of the base and [tex]\( h \)[/tex] is the height of the cone.
3. Substitute the Given Values:
- Substitute [tex]\( V = 3 \pi x^3 \)[/tex] and [tex]\( h = x \)[/tex] into the formula:
[tex]\[ 3 \pi x^3 = \frac{1}{3} \pi r^2 x \][/tex]
4. Simplify the Equation:
- Multiply both sides by 3 to eliminate the fraction:
[tex]\[ 9 \pi x^3 = \pi r^2 x \][/tex]
- Divide both sides by [tex]\( \pi \)[/tex] to cancel [tex]\( \pi \)[/tex]:
[tex]\[ 9 x^3 = r^2 x \][/tex]
5. Solve for [tex]\( r \)[/tex]:
- Divide both sides by [tex]\( x \)[/tex] (assuming [tex]\( x \neq 0 \)[/tex]):
[tex]\[ 9 x^2 = r^2 \][/tex]
- Take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{9 x^2} \][/tex]
6. Simplify the Square Root:
[tex]\[ r = 3 x \][/tex]
### Conclusion:
The radius of the base of the cone is [tex]\( 3 x \)[/tex] units.
So, the correct choice is:
[tex]\[ 3 x \][/tex]
The answer is [tex]\( 3 x \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.