Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the [tex]\(x\)[/tex]-intercept of the function [tex]\( g(x) = \log(x+4) \)[/tex], we need to determine the value of [tex]\( x \)[/tex] for which [tex]\( g(x) = 0 \)[/tex]. In other words, we set the equation [tex]\( g(x) \)[/tex] equal to zero and solve for [tex]\( x \)[/tex].
Here's the detailed step-by-step process of solving for the [tex]\( x \)[/tex]-intercept:
1. Set [tex]\( g(x) \)[/tex] equal to zero:
[tex]\[ g(x) = \log(x+4) = 0 \][/tex]
2. Recall the property of logarithms: When [tex]\( \log_b(y) = 0 \)[/tex], it implies that [tex]\( y = 1 \)[/tex], because any number to the power of zero is 1. Here, the base of the logarithm is assumed to be 10 (common logarithm).
3. Apply this property:
[tex]\[ \log(x+4) = 0 \implies x + 4 = 10^0 \][/tex]
4. Simplify the exponent:
[tex]\[ 10^0 = 1 \][/tex]
Therefore:
[tex]\[ x + 4 = 1 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], subtract 4 from both sides of the equation:
[tex]\[ x + 4 - 4 = 1 - 4 \][/tex]
[tex]\[ x = 1 - 4 \][/tex]
[tex]\[ x = -3 \][/tex]
So, the [tex]\( x \)[/tex]-intercept of the function [tex]\( g(x) = \log(x+4) \)[/tex] is [tex]\( x = -3 \)[/tex]. This means that the graph of [tex]\( g(x) \)[/tex] will cross the [tex]\( x \)[/tex]-axis at [tex]\( x = -3 \)[/tex].
Here's the detailed step-by-step process of solving for the [tex]\( x \)[/tex]-intercept:
1. Set [tex]\( g(x) \)[/tex] equal to zero:
[tex]\[ g(x) = \log(x+4) = 0 \][/tex]
2. Recall the property of logarithms: When [tex]\( \log_b(y) = 0 \)[/tex], it implies that [tex]\( y = 1 \)[/tex], because any number to the power of zero is 1. Here, the base of the logarithm is assumed to be 10 (common logarithm).
3. Apply this property:
[tex]\[ \log(x+4) = 0 \implies x + 4 = 10^0 \][/tex]
4. Simplify the exponent:
[tex]\[ 10^0 = 1 \][/tex]
Therefore:
[tex]\[ x + 4 = 1 \][/tex]
5. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], subtract 4 from both sides of the equation:
[tex]\[ x + 4 - 4 = 1 - 4 \][/tex]
[tex]\[ x = 1 - 4 \][/tex]
[tex]\[ x = -3 \][/tex]
So, the [tex]\( x \)[/tex]-intercept of the function [tex]\( g(x) = \log(x+4) \)[/tex] is [tex]\( x = -3 \)[/tex]. This means that the graph of [tex]\( g(x) \)[/tex] will cross the [tex]\( x \)[/tex]-axis at [tex]\( x = -3 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.