Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the vertex of the graph of the function [tex]\( g(x) = |x - 8| + 6 \)[/tex], let's analyze the structure of this equation.
1. Understand the Absolute Value Function:
The basic form of an absolute value function is [tex]\( g(x) = |x - h| + k \)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the function.
2. Identify [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
- In [tex]\( g(x) = |x - 8| + 6 \)[/tex], the expression inside the absolute value is [tex]\( x - 8 \)[/tex]. This indicates that the value [tex]\( h \)[/tex], which makes the expression zero, is [tex]\( 8 \)[/tex].
- The constant term added outside the absolute value is [tex]\( 6 \)[/tex], representing [tex]\( k \)[/tex].
3. Vertex Coordinates:
- The coordinates of the vertex for the function [tex]\( g(x) = |x - 8| + 6 \)[/tex] are given by [tex]\( (h, k) \)[/tex].
- Therefore, the vertex of the function is [tex]\( (8, 6) \)[/tex].
Given this analysis, the vertex of the graph of [tex]\( g(x) = |x - 8| + 6 \)[/tex] is [tex]\( (8, 6) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(8, 6)} \][/tex]
1. Understand the Absolute Value Function:
The basic form of an absolute value function is [tex]\( g(x) = |x - h| + k \)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the function.
2. Identify [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
- In [tex]\( g(x) = |x - 8| + 6 \)[/tex], the expression inside the absolute value is [tex]\( x - 8 \)[/tex]. This indicates that the value [tex]\( h \)[/tex], which makes the expression zero, is [tex]\( 8 \)[/tex].
- The constant term added outside the absolute value is [tex]\( 6 \)[/tex], representing [tex]\( k \)[/tex].
3. Vertex Coordinates:
- The coordinates of the vertex for the function [tex]\( g(x) = |x - 8| + 6 \)[/tex] are given by [tex]\( (h, k) \)[/tex].
- Therefore, the vertex of the function is [tex]\( (8, 6) \)[/tex].
Given this analysis, the vertex of the graph of [tex]\( g(x) = |x - 8| + 6 \)[/tex] is [tex]\( (8, 6) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(8, 6)} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.