Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how the slopes between the given points compare, let's calculate the slopes step-by-step. Given the points [tex]\((4,30)\)[/tex], [tex]\((10,75)\)[/tex], and [tex]\((12,90)\)[/tex]:
1. Calculating the slope between [tex]\((4,30)\)[/tex] and [tex]\((12,90)\)[/tex]:
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates [tex]\((4, 30)\)[/tex] and [tex]\((12, 90)\)[/tex]:
[tex]\[ m_1 = \frac{90 - 30}{12 - 4} = \frac{60}{8} = 7.5 \][/tex]
2. Calculating the slope between [tex]\((4,30)\)[/tex] and [tex]\((10,75)\)[/tex]:
Using the same slope formula with the coordinates [tex]\((4, 30)\)[/tex] and [tex]\((10, 75)\)[/tex]:
[tex]\[ m_2 = \frac{75 - 30}{10 - 4} = \frac{45}{6} = 7.5 \][/tex]
3. Comparing the two slopes:
From the calculations, we see that:
[tex]\[ m_1 = 7.5 \quad \text{and} \quad m_2 = 7.5 \][/tex]
Therefore, the slopes between the points [tex]\((4,30)\)[/tex] and [tex]\((12,90)\)[/tex], and between [tex]\((4,30)\)[/tex] and [tex]\((10,75)\)[/tex] are indeed the same.
4. Conclusion:
Based on our calculations, the correct statement is:
[tex]\[ \text{The slope between (\(4,30\)) and (\(12,90\)) and between (\(4,30\)) and (\(10,75\)) is the same.} \][/tex]
Thus, the correct option is:
[tex]\[ \textbf{The slope between (4,30) and (12,90) and between (4,30) and (10,75) is the same.} \][/tex]
1. Calculating the slope between [tex]\((4,30)\)[/tex] and [tex]\((12,90)\)[/tex]:
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates [tex]\((4, 30)\)[/tex] and [tex]\((12, 90)\)[/tex]:
[tex]\[ m_1 = \frac{90 - 30}{12 - 4} = \frac{60}{8} = 7.5 \][/tex]
2. Calculating the slope between [tex]\((4,30)\)[/tex] and [tex]\((10,75)\)[/tex]:
Using the same slope formula with the coordinates [tex]\((4, 30)\)[/tex] and [tex]\((10, 75)\)[/tex]:
[tex]\[ m_2 = \frac{75 - 30}{10 - 4} = \frac{45}{6} = 7.5 \][/tex]
3. Comparing the two slopes:
From the calculations, we see that:
[tex]\[ m_1 = 7.5 \quad \text{and} \quad m_2 = 7.5 \][/tex]
Therefore, the slopes between the points [tex]\((4,30)\)[/tex] and [tex]\((12,90)\)[/tex], and between [tex]\((4,30)\)[/tex] and [tex]\((10,75)\)[/tex] are indeed the same.
4. Conclusion:
Based on our calculations, the correct statement is:
[tex]\[ \text{The slope between (\(4,30\)) and (\(12,90\)) and between (\(4,30\)) and (\(10,75\)) is the same.} \][/tex]
Thus, the correct option is:
[tex]\[ \textbf{The slope between (4,30) and (12,90) and between (4,30) and (10,75) is the same.} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.