Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, we'll use the law of total probability. The law of total probability states that if we have multiple mutually exclusive events that partition the sample space, we can find the probability of a union of these events by summing the probabilities of each event multiplied by the conditional probability of the interested event given each event. Let's break it down step-by-step.
1. Determine the probability of selecting each factory:
- Probability of selecting factory A ([tex]\( P(A) \)[/tex]) is [tex]\( 0.50 \)[/tex]
- Probability of selecting factory B ([tex]\( P(B) \)[/tex]) is [tex]\( 0.25 \)[/tex]
- Probability of selecting factory C ([tex]\( P(C) \)[/tex]) is [tex]\( 0.25 \)[/tex]
2. Determine the conditional probability of producing a passenger airplane at each factory:
- Probability of a passenger airplane given it's from factory A ([tex]\( P(\text{Passenger} | A) \)[/tex]) is [tex]\( 0.70 \)[/tex]
- Probability of a passenger airplane given it's from factory B ([tex]\( P(\text{Passenger} | B) \)[/tex]) is [tex]\( 0.25 \)[/tex]
- Probability of a passenger airplane given it's from factory C ([tex]\( P(\text{Passenger} | C) \)[/tex]) is [tex]\( 0.25 \)[/tex]
3. Apply the law of total probability to find the overall probability that the airplane is a passenger airplane:
[tex]\[ P(\text{Passenger}) = P(A) \cdot P(\text{Passenger} | A) + P(B) \cdot P(\text{Passenger} | B) + P(C) \cdot P(\text{Passenger} | C) \][/tex]
4. Plug in the values to get the result:
[tex]\[ P(\text{Passenger}) = (0.50 \times 0.70) + (0.25 \times 0.25) + (0.25 \times 0.25) \][/tex]
[tex]\[ P(\text{Passenger}) = (0.50 \times 0.70) + (0.25 \times 0.25) + (0.25 \times 0.25) \][/tex]
[tex]\[ P(\text{Passenger}) = 0.35 + 0.0625 + 0.0625 \][/tex]
[tex]\[ P(\text{Passenger}) = 0.475 \][/tex]
Therefore, the probability that a randomly selected airplane is a passenger airplane is:
A. 0.475
So, the correct answer is 0.475.
1. Determine the probability of selecting each factory:
- Probability of selecting factory A ([tex]\( P(A) \)[/tex]) is [tex]\( 0.50 \)[/tex]
- Probability of selecting factory B ([tex]\( P(B) \)[/tex]) is [tex]\( 0.25 \)[/tex]
- Probability of selecting factory C ([tex]\( P(C) \)[/tex]) is [tex]\( 0.25 \)[/tex]
2. Determine the conditional probability of producing a passenger airplane at each factory:
- Probability of a passenger airplane given it's from factory A ([tex]\( P(\text{Passenger} | A) \)[/tex]) is [tex]\( 0.70 \)[/tex]
- Probability of a passenger airplane given it's from factory B ([tex]\( P(\text{Passenger} | B) \)[/tex]) is [tex]\( 0.25 \)[/tex]
- Probability of a passenger airplane given it's from factory C ([tex]\( P(\text{Passenger} | C) \)[/tex]) is [tex]\( 0.25 \)[/tex]
3. Apply the law of total probability to find the overall probability that the airplane is a passenger airplane:
[tex]\[ P(\text{Passenger}) = P(A) \cdot P(\text{Passenger} | A) + P(B) \cdot P(\text{Passenger} | B) + P(C) \cdot P(\text{Passenger} | C) \][/tex]
4. Plug in the values to get the result:
[tex]\[ P(\text{Passenger}) = (0.50 \times 0.70) + (0.25 \times 0.25) + (0.25 \times 0.25) \][/tex]
[tex]\[ P(\text{Passenger}) = (0.50 \times 0.70) + (0.25 \times 0.25) + (0.25 \times 0.25) \][/tex]
[tex]\[ P(\text{Passenger}) = 0.35 + 0.0625 + 0.0625 \][/tex]
[tex]\[ P(\text{Passenger}) = 0.475 \][/tex]
Therefore, the probability that a randomly selected airplane is a passenger airplane is:
A. 0.475
So, the correct answer is 0.475.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.