Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To identify the type of transformation and describe the change from the function [tex]\( f(x) = \log x \)[/tex] to [tex]\( g(x) = \log(x) - 3 \)[/tex], let's break down the steps in detail:
1. Understand the Original Function:
The original function is [tex]\( f(x) = \log x \)[/tex]. This is a logarithmic function, which typically has its graph passing through the point (1,0) and increases slowly as [tex]\( x \)[/tex] increases.
2. Identify the Transformed Function:
The transformed function is [tex]\( g(x) = \log(x) - 3 \)[/tex]. This function is derived from [tex]\( f(x) \)[/tex] by subtracting 3 from [tex]\( \log x \)[/tex].
3. Determine the Type of Transformation:
When a constant is subtracted from the entire function [tex]\( f(x) \)[/tex], it results in a vertical shift. Specifically, subtracting 3 means that every point on the graph of [tex]\( f(x) \)[/tex] is moved down by 3 units.
4. Describe the Change:
For the given transformation, [tex]\( g(x) = \log(x) - 3 \)[/tex] indicates that the graph of [tex]\( f(x) = \log x \)[/tex] is shifted vertically downward by 3 units. Thus, every [tex]\( y \)[/tex]-value of the original function [tex]\( f(x) \)[/tex] is decreased by 3.
Conclusion:
The transformation from [tex]\( f(x) = \log x \)[/tex] to [tex]\( g(x) = \log(x) - 3 \)[/tex] is a vertical shift. Specifically, the graph of [tex]\( f(x) \)[/tex] is shifted 3 units downward to produce [tex]\( g(x) \)[/tex].
So, the type of transformation is:
- Vertical shift
And the description of the change is:
- The graph of [tex]\( f(x) = \log x \)[/tex] is shifted 3 units downward to get [tex]\( g(x) = \log(x) - 3 \)[/tex].
This completes the detailed explanation of identifying and describing the transformation.
1. Understand the Original Function:
The original function is [tex]\( f(x) = \log x \)[/tex]. This is a logarithmic function, which typically has its graph passing through the point (1,0) and increases slowly as [tex]\( x \)[/tex] increases.
2. Identify the Transformed Function:
The transformed function is [tex]\( g(x) = \log(x) - 3 \)[/tex]. This function is derived from [tex]\( f(x) \)[/tex] by subtracting 3 from [tex]\( \log x \)[/tex].
3. Determine the Type of Transformation:
When a constant is subtracted from the entire function [tex]\( f(x) \)[/tex], it results in a vertical shift. Specifically, subtracting 3 means that every point on the graph of [tex]\( f(x) \)[/tex] is moved down by 3 units.
4. Describe the Change:
For the given transformation, [tex]\( g(x) = \log(x) - 3 \)[/tex] indicates that the graph of [tex]\( f(x) = \log x \)[/tex] is shifted vertically downward by 3 units. Thus, every [tex]\( y \)[/tex]-value of the original function [tex]\( f(x) \)[/tex] is decreased by 3.
Conclusion:
The transformation from [tex]\( f(x) = \log x \)[/tex] to [tex]\( g(x) = \log(x) - 3 \)[/tex] is a vertical shift. Specifically, the graph of [tex]\( f(x) \)[/tex] is shifted 3 units downward to produce [tex]\( g(x) \)[/tex].
So, the type of transformation is:
- Vertical shift
And the description of the change is:
- The graph of [tex]\( f(x) = \log x \)[/tex] is shifted 3 units downward to get [tex]\( g(x) = \log(x) - 3 \)[/tex].
This completes the detailed explanation of identifying and describing the transformation.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.