Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the problem step-by-step.
Given:
[tex]\[ \sin \left( \frac{19\pi}{2} \right) \][/tex]
First, we need to reduce the given angle to find its equivalent angle within one full circle. A full circle in radians is [tex]\(2\pi\)[/tex]. Therefore, we start by finding the equivalent angle within one full circle by removing full circles (multiples of [tex]\(2\pi\)[/tex]).
[tex]\[ \frac{19\pi}{2} \mod 2\pi \][/tex]
Since [tex]\(2\pi\)[/tex] is equivalent to [tex]\(4\pi/2\)[/tex], let's express [tex]\(2\pi\)[/tex] as [tex]\(4\pi/2\)[/tex]:
[tex]\[ \frac{19\pi}{2} \mod \frac{4\pi}{2} \][/tex]
To find this, we compute:
[tex]\[ \frac{19\pi}{2} \div \frac{4\pi}{2} = \frac{19\pi}{2} \times \frac{2}{4\pi} = \frac{19}{4} = 4 \text{ remainder } \frac{3}{4} \][/tex]
This means:
[tex]\[ \frac{19\pi}{2} = 4 \cdot 2\pi + \frac{3\pi}{2} \][/tex]
So, [tex]\(\frac{19\pi}{2}\)[/tex] is equivalent to:
[tex]\[ \frac{3\pi}{2} \][/tex]
Now, the reference angle is the smallest positive angle formed with the x-axis, which can be found by examining the equivalent angle within one circle (0 to [tex]\(2\pi\)[/tex]):
Since [tex]\(\frac{3\pi}{2}\)[/tex] is in the third quadrant, the reference angle is:
[tex]\[ \pi - \frac{3\pi}{2} = \frac{\pi}{2} \][/tex]
Therefore, the reference angle for [tex]\(\frac{19\pi}{2}\)[/tex] is:
[tex]\[ \frac{\pi}{2} \][/tex]
Now, evaluating the sine of [tex]\(\frac{19\pi}{2}\)[/tex]:
Considering [tex]\( \sin \left( \frac{19\pi}{2} \right) \)[/tex] is equivalent to [tex]\( \sin \left( \frac{3\pi}{2} \right) \)[/tex], and using the property of the sine function:
[tex]\[ \sin \left( \frac{3\pi}{2} \right) = -1 \][/tex]
Thus,
[tex]\[ \sin \left( \frac{19\pi}{2} \right) = -1 \][/tex]
So, the exact answer is:
[tex]\[ \sin \left( \frac{19\pi}{2} \right) = -1 \][/tex]
Given:
[tex]\[ \sin \left( \frac{19\pi}{2} \right) \][/tex]
First, we need to reduce the given angle to find its equivalent angle within one full circle. A full circle in radians is [tex]\(2\pi\)[/tex]. Therefore, we start by finding the equivalent angle within one full circle by removing full circles (multiples of [tex]\(2\pi\)[/tex]).
[tex]\[ \frac{19\pi}{2} \mod 2\pi \][/tex]
Since [tex]\(2\pi\)[/tex] is equivalent to [tex]\(4\pi/2\)[/tex], let's express [tex]\(2\pi\)[/tex] as [tex]\(4\pi/2\)[/tex]:
[tex]\[ \frac{19\pi}{2} \mod \frac{4\pi}{2} \][/tex]
To find this, we compute:
[tex]\[ \frac{19\pi}{2} \div \frac{4\pi}{2} = \frac{19\pi}{2} \times \frac{2}{4\pi} = \frac{19}{4} = 4 \text{ remainder } \frac{3}{4} \][/tex]
This means:
[tex]\[ \frac{19\pi}{2} = 4 \cdot 2\pi + \frac{3\pi}{2} \][/tex]
So, [tex]\(\frac{19\pi}{2}\)[/tex] is equivalent to:
[tex]\[ \frac{3\pi}{2} \][/tex]
Now, the reference angle is the smallest positive angle formed with the x-axis, which can be found by examining the equivalent angle within one circle (0 to [tex]\(2\pi\)[/tex]):
Since [tex]\(\frac{3\pi}{2}\)[/tex] is in the third quadrant, the reference angle is:
[tex]\[ \pi - \frac{3\pi}{2} = \frac{\pi}{2} \][/tex]
Therefore, the reference angle for [tex]\(\frac{19\pi}{2}\)[/tex] is:
[tex]\[ \frac{\pi}{2} \][/tex]
Now, evaluating the sine of [tex]\(\frac{19\pi}{2}\)[/tex]:
Considering [tex]\( \sin \left( \frac{19\pi}{2} \right) \)[/tex] is equivalent to [tex]\( \sin \left( \frac{3\pi}{2} \right) \)[/tex], and using the property of the sine function:
[tex]\[ \sin \left( \frac{3\pi}{2} \right) = -1 \][/tex]
Thus,
[tex]\[ \sin \left( \frac{19\pi}{2} \right) = -1 \][/tex]
So, the exact answer is:
[tex]\[ \sin \left( \frac{19\pi}{2} \right) = -1 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.