Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the net force in the [tex]\( y \)[/tex]-direction for a box being pushed down at an angle of 32 degrees on a rough surface, we need to consider all the forces acting in the vertical direction.
1. Normal Force [tex]\( F_N \)[/tex]:
- The normal force acts upward perpendicular to the surface.
2. Gravitational Force [tex]\( F_g \)[/tex]:
- The gravitational force acts downward and is equal to [tex]\( mg \)[/tex], where [tex]\( m \)[/tex] is the mass of the box and [tex]\( g \)[/tex] is the acceleration due to gravity.
3. Vertical Component of the Pushing Force [tex]\( F_p \)[/tex]:
- The pushing force makes an angle of 32 degrees with the horizontal. Therefore, it has a vertical component as well. This component can be found by using the sine of the angle:
[tex]\[ F_{p, \text{vertical}} = F_p \sin(32^\circ) \][/tex]
- Since the box is pushed downwards, the vertical component of the pushing force acts downward.
To find the net force in the [tex]\( y \)[/tex]-direction, we need to combine these forces. The net force ([tex]\( F_{\text{net}, y} \)[/tex]) will be the sum of these vertical forces. Considering their directions:
- The normal force [tex]\( F_N \)[/tex] acts upward (positive direction).
- The gravitational force [tex]\( F_g \)[/tex] acts downward (negative direction).
- The vertical component of the pushing force, [tex]\( F_p \sin(32^\circ) \)[/tex], also acts downward (negative direction).
Thus, the equation for the net force in the [tex]\( y \)[/tex]-direction is:
[tex]\[ F_{\text{net}, y} = F_N - F_g - F_p \sin(32^\circ) \][/tex]
Therefore, the correct choice is:
[tex]\[ F_{\text{net}, y} = F_{N} - F_g - F_p \sin(32^\circ) \][/tex]
Hence, the fourth option is the correct one:
[tex]\[ \boxed{4} \][/tex]
1. Normal Force [tex]\( F_N \)[/tex]:
- The normal force acts upward perpendicular to the surface.
2. Gravitational Force [tex]\( F_g \)[/tex]:
- The gravitational force acts downward and is equal to [tex]\( mg \)[/tex], where [tex]\( m \)[/tex] is the mass of the box and [tex]\( g \)[/tex] is the acceleration due to gravity.
3. Vertical Component of the Pushing Force [tex]\( F_p \)[/tex]:
- The pushing force makes an angle of 32 degrees with the horizontal. Therefore, it has a vertical component as well. This component can be found by using the sine of the angle:
[tex]\[ F_{p, \text{vertical}} = F_p \sin(32^\circ) \][/tex]
- Since the box is pushed downwards, the vertical component of the pushing force acts downward.
To find the net force in the [tex]\( y \)[/tex]-direction, we need to combine these forces. The net force ([tex]\( F_{\text{net}, y} \)[/tex]) will be the sum of these vertical forces. Considering their directions:
- The normal force [tex]\( F_N \)[/tex] acts upward (positive direction).
- The gravitational force [tex]\( F_g \)[/tex] acts downward (negative direction).
- The vertical component of the pushing force, [tex]\( F_p \sin(32^\circ) \)[/tex], also acts downward (negative direction).
Thus, the equation for the net force in the [tex]\( y \)[/tex]-direction is:
[tex]\[ F_{\text{net}, y} = F_N - F_g - F_p \sin(32^\circ) \][/tex]
Therefore, the correct choice is:
[tex]\[ F_{\text{net}, y} = F_{N} - F_g - F_p \sin(32^\circ) \][/tex]
Hence, the fourth option is the correct one:
[tex]\[ \boxed{4} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.