Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the net force in the [tex]\( y \)[/tex]-direction for a box being pushed down at an angle of 32 degrees on a rough surface, we need to consider all the forces acting in the vertical direction.
1. Normal Force [tex]\( F_N \)[/tex]:
- The normal force acts upward perpendicular to the surface.
2. Gravitational Force [tex]\( F_g \)[/tex]:
- The gravitational force acts downward and is equal to [tex]\( mg \)[/tex], where [tex]\( m \)[/tex] is the mass of the box and [tex]\( g \)[/tex] is the acceleration due to gravity.
3. Vertical Component of the Pushing Force [tex]\( F_p \)[/tex]:
- The pushing force makes an angle of 32 degrees with the horizontal. Therefore, it has a vertical component as well. This component can be found by using the sine of the angle:
[tex]\[ F_{p, \text{vertical}} = F_p \sin(32^\circ) \][/tex]
- Since the box is pushed downwards, the vertical component of the pushing force acts downward.
To find the net force in the [tex]\( y \)[/tex]-direction, we need to combine these forces. The net force ([tex]\( F_{\text{net}, y} \)[/tex]) will be the sum of these vertical forces. Considering their directions:
- The normal force [tex]\( F_N \)[/tex] acts upward (positive direction).
- The gravitational force [tex]\( F_g \)[/tex] acts downward (negative direction).
- The vertical component of the pushing force, [tex]\( F_p \sin(32^\circ) \)[/tex], also acts downward (negative direction).
Thus, the equation for the net force in the [tex]\( y \)[/tex]-direction is:
[tex]\[ F_{\text{net}, y} = F_N - F_g - F_p \sin(32^\circ) \][/tex]
Therefore, the correct choice is:
[tex]\[ F_{\text{net}, y} = F_{N} - F_g - F_p \sin(32^\circ) \][/tex]
Hence, the fourth option is the correct one:
[tex]\[ \boxed{4} \][/tex]
1. Normal Force [tex]\( F_N \)[/tex]:
- The normal force acts upward perpendicular to the surface.
2. Gravitational Force [tex]\( F_g \)[/tex]:
- The gravitational force acts downward and is equal to [tex]\( mg \)[/tex], where [tex]\( m \)[/tex] is the mass of the box and [tex]\( g \)[/tex] is the acceleration due to gravity.
3. Vertical Component of the Pushing Force [tex]\( F_p \)[/tex]:
- The pushing force makes an angle of 32 degrees with the horizontal. Therefore, it has a vertical component as well. This component can be found by using the sine of the angle:
[tex]\[ F_{p, \text{vertical}} = F_p \sin(32^\circ) \][/tex]
- Since the box is pushed downwards, the vertical component of the pushing force acts downward.
To find the net force in the [tex]\( y \)[/tex]-direction, we need to combine these forces. The net force ([tex]\( F_{\text{net}, y} \)[/tex]) will be the sum of these vertical forces. Considering their directions:
- The normal force [tex]\( F_N \)[/tex] acts upward (positive direction).
- The gravitational force [tex]\( F_g \)[/tex] acts downward (negative direction).
- The vertical component of the pushing force, [tex]\( F_p \sin(32^\circ) \)[/tex], also acts downward (negative direction).
Thus, the equation for the net force in the [tex]\( y \)[/tex]-direction is:
[tex]\[ F_{\text{net}, y} = F_N - F_g - F_p \sin(32^\circ) \][/tex]
Therefore, the correct choice is:
[tex]\[ F_{\text{net}, y} = F_{N} - F_g - F_p \sin(32^\circ) \][/tex]
Hence, the fourth option is the correct one:
[tex]\[ \boxed{4} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.