Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factorize the trinomial [tex]\(x^2 - 7x + 6\)[/tex], we need to express it as a product of two binomials of the form [tex]\((x + a)(x + b)\)[/tex].
The first term in the trinomial, [tex]\(x^2\)[/tex], indicates that the first terms in each binomial must be [tex]\(x\)[/tex]. So, our binomials will look like this:
[tex]\[ (x + a)(x + b) \][/tex]
Expanding [tex]\((x + a)(x + b)\)[/tex] gives:
[tex]\[ x^2 + (a + b)x + ab \][/tex]
We need the expanded form to match [tex]\(x^2 - 7x + 6\)[/tex]. Therefore, we must find constants [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that:
[tex]\[ a + b = -7 \quad \text{and} \quad ab = 6 \][/tex]
Next, we look for pairs of integers that multiply to 6:
- [tex]\(1 \cdot 6 = 6\)[/tex]
- [tex]\((-1) \cdot (-6) = 6\)[/tex]
- [tex]\(2 \cdot 3 = 6\)[/tex]
- [tex]\((-2) \cdot (-3) = 6\)[/tex]
Among these pairs, the pair [tex]\((-6)\)[/tex] and [tex]\((-1)\)[/tex] sums up to [tex]\(-7\)[/tex]:
[tex]\[ -6 + (-1) = -7 \][/tex]
So, the correct factorization is:
[tex]\[ (x - 6)(x - 1) \][/tex]
Hence, the answer is:
[tex]\[ D. \ (x - 6)(x - 1) \][/tex]
The first term in the trinomial, [tex]\(x^2\)[/tex], indicates that the first terms in each binomial must be [tex]\(x\)[/tex]. So, our binomials will look like this:
[tex]\[ (x + a)(x + b) \][/tex]
Expanding [tex]\((x + a)(x + b)\)[/tex] gives:
[tex]\[ x^2 + (a + b)x + ab \][/tex]
We need the expanded form to match [tex]\(x^2 - 7x + 6\)[/tex]. Therefore, we must find constants [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that:
[tex]\[ a + b = -7 \quad \text{and} \quad ab = 6 \][/tex]
Next, we look for pairs of integers that multiply to 6:
- [tex]\(1 \cdot 6 = 6\)[/tex]
- [tex]\((-1) \cdot (-6) = 6\)[/tex]
- [tex]\(2 \cdot 3 = 6\)[/tex]
- [tex]\((-2) \cdot (-3) = 6\)[/tex]
Among these pairs, the pair [tex]\((-6)\)[/tex] and [tex]\((-1)\)[/tex] sums up to [tex]\(-7\)[/tex]:
[tex]\[ -6 + (-1) = -7 \][/tex]
So, the correct factorization is:
[tex]\[ (x - 6)(x - 1) \][/tex]
Hence, the answer is:
[tex]\[ D. \ (x - 6)(x - 1) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.