Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's consider the series [tex]\(-2, 6, -18, 54, \ldots\)[/tex]. To find the sum of the first 20 terms, we'll follow these steps:
1. Identify the type of series: This is a geometric series because each term is a constant multiple (common ratio [tex]\( r \)[/tex]) of the previous one.
2. Determine the first term ([tex]\( a \)[/tex]) and the common ratio ([tex]\( r \)[/tex]):
- The first term ([tex]\( a \)[/tex]) of the series is [tex]\(-2\)[/tex].
- The common ratio ([tex]\( r \)[/tex]) can be found by dividing the second term by the first term:
[tex]\[ r = \frac{6}{-2} = -3 \][/tex]
3. Set up the formula for the sum of the first [tex]\( n \)[/tex] terms of a geometric series:
The sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of a geometric series can be found using the formula:
[tex]\[ S_n = a \frac{1 - r^n}{1 - r} \][/tex]
where:
- [tex]\( a \)[/tex] is the first term,
- [tex]\( r \)[/tex] is the common ratio, and
- [tex]\( n \)[/tex] is the number of terms.
4. Plug in the values we have:
Here, [tex]\( a = -2 \)[/tex], [tex]\( r = -3 \)[/tex], and [tex]\( n = 20 \)[/tex]. Plugging these into the formula, we get:
[tex]\[ S_{20} = -2 \frac{1 - (-3)^{20}}{1 - (-3)} \][/tex]
5. Simplify the expression:
Let's simplify within the fraction:
[tex]\[ S_{20} = -2 \frac{1 - (-3)^{20}}{1 + 3} \][/tex]
[tex]\[ S_{20} = -2 \frac{1 - (-3)^{20}}{4} \][/tex]
6. Final computation:
- Calculate [tex]\( (-3)^{20} \)[/tex] (a large number, but crucial for the formula),
- Subtract that result from 1,
- Divide that by 4,
- Multiply by [tex]\(-2\)[/tex] to get the final sum.
7. Result:
After performing these calculations, we find that the sum of the first 20 terms of the series is approximately:
[tex]\[ 1,743,392,200 \][/tex]
So, the sum of the first 20 terms of the series [tex]\(-2, 6, -18, 54, \ldots\)[/tex] is [tex]\(\boxed{1,743,392,200}\)[/tex].
1. Identify the type of series: This is a geometric series because each term is a constant multiple (common ratio [tex]\( r \)[/tex]) of the previous one.
2. Determine the first term ([tex]\( a \)[/tex]) and the common ratio ([tex]\( r \)[/tex]):
- The first term ([tex]\( a \)[/tex]) of the series is [tex]\(-2\)[/tex].
- The common ratio ([tex]\( r \)[/tex]) can be found by dividing the second term by the first term:
[tex]\[ r = \frac{6}{-2} = -3 \][/tex]
3. Set up the formula for the sum of the first [tex]\( n \)[/tex] terms of a geometric series:
The sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of a geometric series can be found using the formula:
[tex]\[ S_n = a \frac{1 - r^n}{1 - r} \][/tex]
where:
- [tex]\( a \)[/tex] is the first term,
- [tex]\( r \)[/tex] is the common ratio, and
- [tex]\( n \)[/tex] is the number of terms.
4. Plug in the values we have:
Here, [tex]\( a = -2 \)[/tex], [tex]\( r = -3 \)[/tex], and [tex]\( n = 20 \)[/tex]. Plugging these into the formula, we get:
[tex]\[ S_{20} = -2 \frac{1 - (-3)^{20}}{1 - (-3)} \][/tex]
5. Simplify the expression:
Let's simplify within the fraction:
[tex]\[ S_{20} = -2 \frac{1 - (-3)^{20}}{1 + 3} \][/tex]
[tex]\[ S_{20} = -2 \frac{1 - (-3)^{20}}{4} \][/tex]
6. Final computation:
- Calculate [tex]\( (-3)^{20} \)[/tex] (a large number, but crucial for the formula),
- Subtract that result from 1,
- Divide that by 4,
- Multiply by [tex]\(-2\)[/tex] to get the final sum.
7. Result:
After performing these calculations, we find that the sum of the first 20 terms of the series is approximately:
[tex]\[ 1,743,392,200 \][/tex]
So, the sum of the first 20 terms of the series [tex]\(-2, 6, -18, 54, \ldots\)[/tex] is [tex]\(\boxed{1,743,392,200}\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.