Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the margin of error for the mean diameter of the washers produced in the company, we will use the following steps:
1. Identify the given data:
- Sample size ([tex]\( n \)[/tex]): 120
- Sample mean ([tex]\( \bar{x} \)[/tex]): 28 inches
- Population standard deviation ([tex]\( \sigma \)[/tex]): 0.5 inches
- Confidence level: 99%
2. Determine the Z-score for the given confidence level:
For a 99% confidence level, we need to find the Z-score that corresponds to the middle 99% of the standard normal distribution. The remaining 1% is divided equally into the two tails of the distribution, so each tail has 0.5%.
To find the Z-score, we look up the value that corresponds to [tex]\( 1 - \frac{1-0.99}{2} = 0.995 \)[/tex] in the Z-table. This value is approximately 2.576.
3. Calculate the margin of error (E):
The formula for the margin of error is:
[tex]\[ E = Z \times \left( \frac{\sigma}{\sqrt{n}} \right) \][/tex]
Where:
- [tex]\( Z \)[/tex] is the Z-score
- [tex]\( \sigma \)[/tex] is the population standard deviation
- [tex]\( n \)[/tex] is the sample size
Plugging in the values:
[tex]\[ E = 2.576 \times \left( \frac{0.5}{\sqrt{120}} \right) \][/tex]
4. Simplify the calculation:
First, compute [tex]\( \frac{0.5}{\sqrt{120}} \)[/tex]:
[tex]\[ \frac{0.5}{\sqrt{120}} \approx \frac{0.5}{10.954} \approx 0.0457 \][/tex]
Then, multiply by the Z-score:
[tex]\[ E = 2.576 \times 0.0457 \approx 0.118 \][/tex]
5. Conclusion:
The margin of error of the mean diameter of the washers, at a 99% confidence level, is approximately 0.118 inches (rounded to three decimal places).
So, the margin of error of the mean is [tex]\(\mathbf{0.118}\)[/tex] inches.
1. Identify the given data:
- Sample size ([tex]\( n \)[/tex]): 120
- Sample mean ([tex]\( \bar{x} \)[/tex]): 28 inches
- Population standard deviation ([tex]\( \sigma \)[/tex]): 0.5 inches
- Confidence level: 99%
2. Determine the Z-score for the given confidence level:
For a 99% confidence level, we need to find the Z-score that corresponds to the middle 99% of the standard normal distribution. The remaining 1% is divided equally into the two tails of the distribution, so each tail has 0.5%.
To find the Z-score, we look up the value that corresponds to [tex]\( 1 - \frac{1-0.99}{2} = 0.995 \)[/tex] in the Z-table. This value is approximately 2.576.
3. Calculate the margin of error (E):
The formula for the margin of error is:
[tex]\[ E = Z \times \left( \frac{\sigma}{\sqrt{n}} \right) \][/tex]
Where:
- [tex]\( Z \)[/tex] is the Z-score
- [tex]\( \sigma \)[/tex] is the population standard deviation
- [tex]\( n \)[/tex] is the sample size
Plugging in the values:
[tex]\[ E = 2.576 \times \left( \frac{0.5}{\sqrt{120}} \right) \][/tex]
4. Simplify the calculation:
First, compute [tex]\( \frac{0.5}{\sqrt{120}} \)[/tex]:
[tex]\[ \frac{0.5}{\sqrt{120}} \approx \frac{0.5}{10.954} \approx 0.0457 \][/tex]
Then, multiply by the Z-score:
[tex]\[ E = 2.576 \times 0.0457 \approx 0.118 \][/tex]
5. Conclusion:
The margin of error of the mean diameter of the washers, at a 99% confidence level, is approximately 0.118 inches (rounded to three decimal places).
So, the margin of error of the mean is [tex]\(\mathbf{0.118}\)[/tex] inches.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.