Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Which of the following is an [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = x^2 - 25 \)[/tex]?

A. -15
B. -20
C. -5
D. -25


Sagot :

To determine the [tex]$x$[/tex]-intercepts of the function [tex]$f(x) = x^2 - 25$[/tex], we need to find the values of [tex]$x$[/tex] where [tex]$f(x) = 0$[/tex]. This involves solving the equation:

[tex]\[ f(x) = 0 \][/tex]

Given our function:

[tex]\[ x^2 - 25 = 0 \][/tex]

To solve for [tex]$x$[/tex], we first isolate the [tex]$x^2$[/tex] term:

[tex]\[ x^2 = 25 \][/tex]

Next, we take the square root of both sides of the equation to solve for [tex]$x$[/tex]:

[tex]\[ x = \pm \sqrt{25} \][/tex]

This simplifies to:

[tex]\[ x = \pm 5 \][/tex]

Therefore, the [tex]$x$[/tex]-intercepts of the function are [tex]$x = 5$[/tex] and [tex]$x = -5$[/tex].

Given the options:
A. -15
B. -20
C. -5
D. -25

We can see that the only [tex]$x$[/tex]-intercept from the given options is:

C. -5

Thus, the correct answer is C. -5.