Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! When applying a horizontal stretch to a function, the effect on the function’s equation can be understood through the transformation rules for functions.
Given the parent function [tex]\( f(x) = x^2 \)[/tex], we want to apply a horizontal stretch by a factor of 5. A horizontal stretch affects the input variable [tex]\( x \)[/tex] in a specific way:
1. Horizontal Stretch by a factor of 5: In mathematical terms, stretching a function horizontally by a factor of 5 means that each [tex]\( x \)[/tex]-value is multiplied by 5. To achieve this, we actually divide the [tex]\( x \)[/tex]-value by 5 inside the function.
Thus, the transformed function [tex]\( g(x) \)[/tex] can be written as:
[tex]\[ g(x) = f\left(\frac{x}{5}\right) \][/tex]
Given that the parent function is [tex]\( f(x) = x^2 \)[/tex], we substitute [tex]\(\frac{x}{5}\)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ g(x) = \left(\frac{x}{5}\right)^2 \][/tex]
Simplifying this expression:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Hence, the equation of the new function after applying the horizontal stretch by a factor of 5 is:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Now, let's match this with the given choices:
A. [tex]\( g(x) = \left(\frac{1}{5} x\right)^2 \)[/tex]
B. [tex]\( g(x) = 5 x^2 \)[/tex]
C. [tex]\( g(x) = (5 x)^2 \)[/tex]
D. [tex]\( g(x) = \frac{1}{5} x^2 \)[/tex]
The correct answer is option A:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Given the parent function [tex]\( f(x) = x^2 \)[/tex], we want to apply a horizontal stretch by a factor of 5. A horizontal stretch affects the input variable [tex]\( x \)[/tex] in a specific way:
1. Horizontal Stretch by a factor of 5: In mathematical terms, stretching a function horizontally by a factor of 5 means that each [tex]\( x \)[/tex]-value is multiplied by 5. To achieve this, we actually divide the [tex]\( x \)[/tex]-value by 5 inside the function.
Thus, the transformed function [tex]\( g(x) \)[/tex] can be written as:
[tex]\[ g(x) = f\left(\frac{x}{5}\right) \][/tex]
Given that the parent function is [tex]\( f(x) = x^2 \)[/tex], we substitute [tex]\(\frac{x}{5}\)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ g(x) = \left(\frac{x}{5}\right)^2 \][/tex]
Simplifying this expression:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Hence, the equation of the new function after applying the horizontal stretch by a factor of 5 is:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Now, let's match this with the given choices:
A. [tex]\( g(x) = \left(\frac{1}{5} x\right)^2 \)[/tex]
B. [tex]\( g(x) = 5 x^2 \)[/tex]
C. [tex]\( g(x) = (5 x)^2 \)[/tex]
D. [tex]\( g(x) = \frac{1}{5} x^2 \)[/tex]
The correct answer is option A:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.