Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! When applying a horizontal stretch to a function, the effect on the function’s equation can be understood through the transformation rules for functions.
Given the parent function [tex]\( f(x) = x^2 \)[/tex], we want to apply a horizontal stretch by a factor of 5. A horizontal stretch affects the input variable [tex]\( x \)[/tex] in a specific way:
1. Horizontal Stretch by a factor of 5: In mathematical terms, stretching a function horizontally by a factor of 5 means that each [tex]\( x \)[/tex]-value is multiplied by 5. To achieve this, we actually divide the [tex]\( x \)[/tex]-value by 5 inside the function.
Thus, the transformed function [tex]\( g(x) \)[/tex] can be written as:
[tex]\[ g(x) = f\left(\frac{x}{5}\right) \][/tex]
Given that the parent function is [tex]\( f(x) = x^2 \)[/tex], we substitute [tex]\(\frac{x}{5}\)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ g(x) = \left(\frac{x}{5}\right)^2 \][/tex]
Simplifying this expression:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Hence, the equation of the new function after applying the horizontal stretch by a factor of 5 is:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Now, let's match this with the given choices:
A. [tex]\( g(x) = \left(\frac{1}{5} x\right)^2 \)[/tex]
B. [tex]\( g(x) = 5 x^2 \)[/tex]
C. [tex]\( g(x) = (5 x)^2 \)[/tex]
D. [tex]\( g(x) = \frac{1}{5} x^2 \)[/tex]
The correct answer is option A:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Given the parent function [tex]\( f(x) = x^2 \)[/tex], we want to apply a horizontal stretch by a factor of 5. A horizontal stretch affects the input variable [tex]\( x \)[/tex] in a specific way:
1. Horizontal Stretch by a factor of 5: In mathematical terms, stretching a function horizontally by a factor of 5 means that each [tex]\( x \)[/tex]-value is multiplied by 5. To achieve this, we actually divide the [tex]\( x \)[/tex]-value by 5 inside the function.
Thus, the transformed function [tex]\( g(x) \)[/tex] can be written as:
[tex]\[ g(x) = f\left(\frac{x}{5}\right) \][/tex]
Given that the parent function is [tex]\( f(x) = x^2 \)[/tex], we substitute [tex]\(\frac{x}{5}\)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ g(x) = \left(\frac{x}{5}\right)^2 \][/tex]
Simplifying this expression:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Hence, the equation of the new function after applying the horizontal stretch by a factor of 5 is:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Now, let's match this with the given choices:
A. [tex]\( g(x) = \left(\frac{1}{5} x\right)^2 \)[/tex]
B. [tex]\( g(x) = 5 x^2 \)[/tex]
C. [tex]\( g(x) = (5 x)^2 \)[/tex]
D. [tex]\( g(x) = \frac{1}{5} x^2 \)[/tex]
The correct answer is option A:
[tex]\[ g(x) = \left(\frac{1}{5} x\right)^2 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.