Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the constant of variation, [tex]\( k \)[/tex], of the direct variation [tex]\( y = kx \)[/tex] through [tex]\((-3, 2)\)[/tex]?

A. [tex]\( k = -\frac{3}{2} \)[/tex]
B. [tex]\( k = \frac{2}{3} \)[/tex]
C. [tex]\( k = \frac{2}{3} \)[/tex]
D. [tex]\( k = \frac{3}{2} \)[/tex]

Sagot :

To find the constant of variation [tex]\( k \)[/tex] for the direct variation equation [tex]\( y = kx \)[/tex] that passes through the point [tex]\((-3, 2)\)[/tex], we follow these steps:

1. Identify the given point:
- The given point is [tex]\((-3, 2)\)[/tex].
- This means when [tex]\( x = -3 \)[/tex], [tex]\( y = 2 \)[/tex].

2. Recall the direct variation formula:
- The formula for direct variation is [tex]\( y = kx \)[/tex], where [tex]\( k \)[/tex] is the constant of variation.

3. Substitute the values into the formula:
- Substitute [tex]\( x = -3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation [tex]\( y = kx \)[/tex]:
[tex]\[ 2 = k \cdot (-3) \][/tex]

4. Solve for [tex]\( k \)[/tex]:
- Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{y}{x} = \frac{2}{-3} \][/tex]

Therefore, the constant of variation [tex]\( k \)[/tex] is:
[tex]\[ k = -\frac{2}{3} \][/tex]

This value corresponds to one of the provided choices. So, the correct answer is:
[tex]\[ k = -\frac{2}{3} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.