Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's describe the key aspects of the function [tex]\( f(x) = -x^2 - 2x - 1 \)[/tex] step by step.
1. Vertex (Maximum Value):
- The function [tex]\( f(x) = -x^2 - 2x - 1 \)[/tex] is a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex] with [tex]\( a = -1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -1 \)[/tex].
- For a quadratic function [tex]\( ax^2 + bx + c \)[/tex], the vertex is found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( x = -\frac{-2}{2 \cdot (-1)} = 1 \)[/tex].
- To find the vertex's y-coordinate, substitute [tex]\( x = -1 \)[/tex] back into the function:
[tex]\[ f(-1) = -(-1)^2 - 2(-1) - 1 = -1 + 2 - 1 = 0 \][/tex]
- Thus, the vertex is at [tex]\((-1, 0)\)[/tex], and since the coefficient of [tex]\( x^2 \)[/tex] is negative, this vertex is the maximum value [tex]\( v \)[/tex].
2. Increasing Interval:
- A quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] with [tex]\( a < 0 \)[/tex] is upward-facing (concave down), meaning it decreases to the vertex and then increases after the vertex.
- Since our vertex is at [tex]\( x = -1 \)[/tex], the function is increasing on the interval [tex]\( (-1, \infty) \)[/tex].
3. Decreasing Interval:
- Similarly, the function is decreasing before the vertex. Therefore, it is decreasing on the interval [tex]\( (-\infty, -1] \)[/tex].
4. Domain:
- The domain of any quadratic function is all real numbers, which is [tex]\( (-\infty, \infty) \)[/tex].
5. Range:
- The range is determined by the vertex and the direction the parabola opens. Since the vertex is [tex]\((-1, 0)\)[/tex] and the parabola opens downwards, the range is from [tex]\( 0 \)[/tex] (the y-coordinate of the vertex) to negative infinity.
- Hence, the range of the function is [tex]\( (-\infty, 0] \)[/tex].
In summary:
- The vertex is the maximum value [tex]\( v \)[/tex].
- The function is increasing (choose the interval) [tex]\( (-1, \infty) \)[/tex].
- The function is decreasing (choose the interval) [tex]\( (-\infty, -1] \)[/tex].
- The domain of the function is [tex]\( (-\infty, \infty) \)[/tex].
- The range of the function is [tex]\( (-\infty, 0] \)[/tex].
1. Vertex (Maximum Value):
- The function [tex]\( f(x) = -x^2 - 2x - 1 \)[/tex] is a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex] with [tex]\( a = -1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -1 \)[/tex].
- For a quadratic function [tex]\( ax^2 + bx + c \)[/tex], the vertex is found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( x = -\frac{-2}{2 \cdot (-1)} = 1 \)[/tex].
- To find the vertex's y-coordinate, substitute [tex]\( x = -1 \)[/tex] back into the function:
[tex]\[ f(-1) = -(-1)^2 - 2(-1) - 1 = -1 + 2 - 1 = 0 \][/tex]
- Thus, the vertex is at [tex]\((-1, 0)\)[/tex], and since the coefficient of [tex]\( x^2 \)[/tex] is negative, this vertex is the maximum value [tex]\( v \)[/tex].
2. Increasing Interval:
- A quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] with [tex]\( a < 0 \)[/tex] is upward-facing (concave down), meaning it decreases to the vertex and then increases after the vertex.
- Since our vertex is at [tex]\( x = -1 \)[/tex], the function is increasing on the interval [tex]\( (-1, \infty) \)[/tex].
3. Decreasing Interval:
- Similarly, the function is decreasing before the vertex. Therefore, it is decreasing on the interval [tex]\( (-\infty, -1] \)[/tex].
4. Domain:
- The domain of any quadratic function is all real numbers, which is [tex]\( (-\infty, \infty) \)[/tex].
5. Range:
- The range is determined by the vertex and the direction the parabola opens. Since the vertex is [tex]\((-1, 0)\)[/tex] and the parabola opens downwards, the range is from [tex]\( 0 \)[/tex] (the y-coordinate of the vertex) to negative infinity.
- Hence, the range of the function is [tex]\( (-\infty, 0] \)[/tex].
In summary:
- The vertex is the maximum value [tex]\( v \)[/tex].
- The function is increasing (choose the interval) [tex]\( (-1, \infty) \)[/tex].
- The function is decreasing (choose the interval) [tex]\( (-\infty, -1] \)[/tex].
- The domain of the function is [tex]\( (-\infty, \infty) \)[/tex].
- The range of the function is [tex]\( (-\infty, 0] \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.