Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Choose the correct simplification of the expression [tex]\(\frac{4b}{a^{-10}}\)[/tex].

A. [tex]\(\frac{a^{10}b}{4}\)[/tex]
B. [tex]\(4a^{10}b\)[/tex]
C. [tex]\(\frac{4}{a^{10}b}\)[/tex]
D. Already simplified


Sagot :

Let's simplify the given expression step-by-step:

The original expression is:
[tex]\[ \frac{4 b}{a^{-10}} \][/tex]

We know the property of exponents that states [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex]. Applying this property, we can rewrite [tex]\( a^{-10} \)[/tex] as:
[tex]\[ a^{-10} = \frac{1}{a^{10}} \][/tex]

Substituting this into the original expression, we get:
[tex]\[ \frac{4 b}{\frac{1}{a^{10}}} \][/tex]

To simplify the division by a fraction, multiply by the reciprocal:
[tex]\[ \frac{4 b}{\frac{1}{a^{10}}} = 4 b \times a^{10} \][/tex]

So, we have:
[tex]\[ 4 b \times a^{10} = 4 a^{10} b \][/tex]

Therefore, the correct simplification of the expression [tex]\(\frac{4 b}{a^{-10}}\)[/tex] is:
[tex]\[ 4 a^{10} b \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{4 a^{10} b} \][/tex]