Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the leading coefficient of a polynomial function, we need to identify the term with the highest exponent of [tex]\( x \)[/tex]. The leading coefficient is the coefficient of this highest-degree term.
Let's analyze the polynomial function:
[tex]\[ F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \][/tex]
1. Identify the term with the highest power of [tex]\( x \)[/tex]:
- The terms in the polynomial are:
- [tex]\(\frac{1}{4} x^5\)[/tex]
- [tex]\(8 x\)[/tex]
- [tex]\(-5 x^4\)[/tex]
- [tex]\(-19\)[/tex]
- Among these terms, [tex]\(\frac{1}{4} x^5\)[/tex] has the highest power of [tex]\( x \)[/tex], which is [tex]\( 5 \)[/tex].
2. Determine the coefficient of this leading term:
- The leading term [tex]\(\frac{1}{4} x^5\)[/tex] has a coefficient of [tex]\(\frac{1}{4}\)[/tex].
3. Conclusion:
- The coefficient of the term with the highest power of [tex]\( x \)[/tex] (which is [tex]\( x^5 \)[/tex]) is the leading coefficient.
Therefore, the leading coefficient of the polynomial [tex]\( F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \)[/tex] is:
[tex]\[ \boxed{\frac{1}{4}} \][/tex]
So, the correct answer is option [tex]\( D \)[/tex].
Let's analyze the polynomial function:
[tex]\[ F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \][/tex]
1. Identify the term with the highest power of [tex]\( x \)[/tex]:
- The terms in the polynomial are:
- [tex]\(\frac{1}{4} x^5\)[/tex]
- [tex]\(8 x\)[/tex]
- [tex]\(-5 x^4\)[/tex]
- [tex]\(-19\)[/tex]
- Among these terms, [tex]\(\frac{1}{4} x^5\)[/tex] has the highest power of [tex]\( x \)[/tex], which is [tex]\( 5 \)[/tex].
2. Determine the coefficient of this leading term:
- The leading term [tex]\(\frac{1}{4} x^5\)[/tex] has a coefficient of [tex]\(\frac{1}{4}\)[/tex].
3. Conclusion:
- The coefficient of the term with the highest power of [tex]\( x \)[/tex] (which is [tex]\( x^5 \)[/tex]) is the leading coefficient.
Therefore, the leading coefficient of the polynomial [tex]\( F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \)[/tex] is:
[tex]\[ \boxed{\frac{1}{4}} \][/tex]
So, the correct answer is option [tex]\( D \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.