At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the leading coefficient of a polynomial function, we need to identify the term with the highest exponent of [tex]\( x \)[/tex]. The leading coefficient is the coefficient of this highest-degree term.
Let's analyze the polynomial function:
[tex]\[ F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \][/tex]
1. Identify the term with the highest power of [tex]\( x \)[/tex]:
- The terms in the polynomial are:
- [tex]\(\frac{1}{4} x^5\)[/tex]
- [tex]\(8 x\)[/tex]
- [tex]\(-5 x^4\)[/tex]
- [tex]\(-19\)[/tex]
- Among these terms, [tex]\(\frac{1}{4} x^5\)[/tex] has the highest power of [tex]\( x \)[/tex], which is [tex]\( 5 \)[/tex].
2. Determine the coefficient of this leading term:
- The leading term [tex]\(\frac{1}{4} x^5\)[/tex] has a coefficient of [tex]\(\frac{1}{4}\)[/tex].
3. Conclusion:
- The coefficient of the term with the highest power of [tex]\( x \)[/tex] (which is [tex]\( x^5 \)[/tex]) is the leading coefficient.
Therefore, the leading coefficient of the polynomial [tex]\( F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \)[/tex] is:
[tex]\[ \boxed{\frac{1}{4}} \][/tex]
So, the correct answer is option [tex]\( D \)[/tex].
Let's analyze the polynomial function:
[tex]\[ F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \][/tex]
1. Identify the term with the highest power of [tex]\( x \)[/tex]:
- The terms in the polynomial are:
- [tex]\(\frac{1}{4} x^5\)[/tex]
- [tex]\(8 x\)[/tex]
- [tex]\(-5 x^4\)[/tex]
- [tex]\(-19\)[/tex]
- Among these terms, [tex]\(\frac{1}{4} x^5\)[/tex] has the highest power of [tex]\( x \)[/tex], which is [tex]\( 5 \)[/tex].
2. Determine the coefficient of this leading term:
- The leading term [tex]\(\frac{1}{4} x^5\)[/tex] has a coefficient of [tex]\(\frac{1}{4}\)[/tex].
3. Conclusion:
- The coefficient of the term with the highest power of [tex]\( x \)[/tex] (which is [tex]\( x^5 \)[/tex]) is the leading coefficient.
Therefore, the leading coefficient of the polynomial [tex]\( F(x) = \frac{1}{4} x^5 + 8 x - 5 x^4 - 19 \)[/tex] is:
[tex]\[ \boxed{\frac{1}{4}} \][/tex]
So, the correct answer is option [tex]\( D \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.