Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which statement best describes the function [tex]\( f(x) \)[/tex] given that [tex]\( f(p) < f(q) \)[/tex] for [tex]\( p < q \)[/tex], we need to analyze the nature of the function based on the given property.
The condition [tex]\( f(p) < f(q) \)[/tex] for [tex]\( p < q \)[/tex] implies that [tex]\( f(x) \)[/tex] is a strictly increasing function. A strictly increasing function means that as [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] also increases without any decrease.
### Possible Types of Functions
1. Odd Function:
A function [tex]\( f(x) \)[/tex] is considered odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex] in its domain.
2. Even Function:
A function [tex]\( f(x) \)[/tex] is considered even if [tex]\( f(x) = f(-x) \)[/tex] for all [tex]\( x \)[/tex] in its domain.
Let's analyze both possibilities:
Odd Function Analysis:
- Suppose [tex]\( f(x) \)[/tex] is an odd function and strictly increasing.
- For example, [tex]\( f(p) < f(q) \text{ where } p < q \)[/tex], so [tex]\( f(p) \text{ and } f(q) \)[/tex] are positive or negative based on the interval considered.
- Consider [tex]\( f(-x) = -f(x) \)[/tex]:
- If [tex]\( x \)[/tex] increases, then [tex]\(-x\)[/tex] decreases, making [tex]\(-f(x)\)[/tex] decrease as well, which preserves the strictly increasing nature.
- Thus, it's possible for a function to be odd and strictly increasing.
Even Function Analysis:
- Suppose [tex]\( f(x) \)[/tex] is an even function and strictly increasing.
- Since [tex]\( f(x) = f(-x) \)[/tex], the function's value at a positive [tex]\( x \)[/tex] is equal to its value at negative [tex]\( x \)[/tex].
- If the function is strictly increasing for positive [tex]\( x \)[/tex], it must also strictly increase for negative [tex]\( x \)[/tex].
- This would meet the condition [tex]\( f(p) < f(q) \text{ for } p < q \)[/tex] on the negative interval and [tex]\( f(p) < f(q) \text{ for } p < q \)[/tex] on the positive interval.
- Thus, it is also possible for a function to be even and strictly increasing.
### Conclusion
Given that the function [tex]\( f(x) \)[/tex] is strictly increasing, it satisfies the property of increasing without any restrictions on it being odd or even. Hence, we can conclude:
The function [tex]\( f(x) \)[/tex] can be both odd or even.
So, the statement that best describes [tex]\( f(x) \)[/tex] is:
- [tex]\( f(x) \)[/tex] can be odd or even.
Answer:
[tex]\[ \boxed{f(x) \text{ can be odd or even.}} \][/tex]
The condition [tex]\( f(p) < f(q) \)[/tex] for [tex]\( p < q \)[/tex] implies that [tex]\( f(x) \)[/tex] is a strictly increasing function. A strictly increasing function means that as [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] also increases without any decrease.
### Possible Types of Functions
1. Odd Function:
A function [tex]\( f(x) \)[/tex] is considered odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex] in its domain.
2. Even Function:
A function [tex]\( f(x) \)[/tex] is considered even if [tex]\( f(x) = f(-x) \)[/tex] for all [tex]\( x \)[/tex] in its domain.
Let's analyze both possibilities:
Odd Function Analysis:
- Suppose [tex]\( f(x) \)[/tex] is an odd function and strictly increasing.
- For example, [tex]\( f(p) < f(q) \text{ where } p < q \)[/tex], so [tex]\( f(p) \text{ and } f(q) \)[/tex] are positive or negative based on the interval considered.
- Consider [tex]\( f(-x) = -f(x) \)[/tex]:
- If [tex]\( x \)[/tex] increases, then [tex]\(-x\)[/tex] decreases, making [tex]\(-f(x)\)[/tex] decrease as well, which preserves the strictly increasing nature.
- Thus, it's possible for a function to be odd and strictly increasing.
Even Function Analysis:
- Suppose [tex]\( f(x) \)[/tex] is an even function and strictly increasing.
- Since [tex]\( f(x) = f(-x) \)[/tex], the function's value at a positive [tex]\( x \)[/tex] is equal to its value at negative [tex]\( x \)[/tex].
- If the function is strictly increasing for positive [tex]\( x \)[/tex], it must also strictly increase for negative [tex]\( x \)[/tex].
- This would meet the condition [tex]\( f(p) < f(q) \text{ for } p < q \)[/tex] on the negative interval and [tex]\( f(p) < f(q) \text{ for } p < q \)[/tex] on the positive interval.
- Thus, it is also possible for a function to be even and strictly increasing.
### Conclusion
Given that the function [tex]\( f(x) \)[/tex] is strictly increasing, it satisfies the property of increasing without any restrictions on it being odd or even. Hence, we can conclude:
The function [tex]\( f(x) \)[/tex] can be both odd or even.
So, the statement that best describes [tex]\( f(x) \)[/tex] is:
- [tex]\( f(x) \)[/tex] can be odd or even.
Answer:
[tex]\[ \boxed{f(x) \text{ can be odd or even.}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.