Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the inequality [tex]\(-6 - 12 \left(j - \frac{1}{2}\right) \geq 8j\)[/tex] step by step.
1. Expand the inequality:
[tex]\[ -6 - 12 \left(j - \frac{1}{2}\right) \geq 8j \][/tex]
2. Distribute [tex]\(-12\)[/tex] within the parentheses:
[tex]\[ -6 - 12j + 6 \geq 8j \][/tex]
3. Combine like terms on the left-hand side:
[tex]\[ -12j \geq 8j \][/tex]
4. Move all terms involving [tex]\( j \)[/tex] to one side of the inequality:
[tex]\[ -12j - 8j \geq 0 \][/tex]
5. Combine the [tex]\( j \)[/tex] terms:
[tex]\[ -20j \geq 0 \][/tex]
6. Isolate [tex]\( j \)[/tex]:
Divide both sides by [tex]\(-20\)[/tex]. Note that dividing by a negative number reverses the inequality:
[tex]\[ j \leq 0 \][/tex]
So, the solution to the inequality is:
[tex]\[ j \leq 0 \][/tex]
Any number that is less than or equal to 0 will satisfy the inequality.
For example, [tex]\( j = -1 \)[/tex] is a solution:
[tex]\[ -6 - 12 \left( -1 - \frac{1}{2} \right) \geq 8 \cdot (-1) \][/tex]
[tex]\[ -6 - 12 \left( -1.5 \right) \geq -8 \][/tex]
[tex]\[ -6 + 18 \geq -8 \][/tex]
[tex]\[ 12 \geq -8 \][/tex]
Thus, 12 is indeed greater than or equal to -8, confirming that [tex]\( j = -1 \)[/tex] is a valid solution.
So any number that is less than or equal to 0, such as [tex]\( j = -1 \)[/tex], satisfies the inequality.
1. Expand the inequality:
[tex]\[ -6 - 12 \left(j - \frac{1}{2}\right) \geq 8j \][/tex]
2. Distribute [tex]\(-12\)[/tex] within the parentheses:
[tex]\[ -6 - 12j + 6 \geq 8j \][/tex]
3. Combine like terms on the left-hand side:
[tex]\[ -12j \geq 8j \][/tex]
4. Move all terms involving [tex]\( j \)[/tex] to one side of the inequality:
[tex]\[ -12j - 8j \geq 0 \][/tex]
5. Combine the [tex]\( j \)[/tex] terms:
[tex]\[ -20j \geq 0 \][/tex]
6. Isolate [tex]\( j \)[/tex]:
Divide both sides by [tex]\(-20\)[/tex]. Note that dividing by a negative number reverses the inequality:
[tex]\[ j \leq 0 \][/tex]
So, the solution to the inequality is:
[tex]\[ j \leq 0 \][/tex]
Any number that is less than or equal to 0 will satisfy the inequality.
For example, [tex]\( j = -1 \)[/tex] is a solution:
[tex]\[ -6 - 12 \left( -1 - \frac{1}{2} \right) \geq 8 \cdot (-1) \][/tex]
[tex]\[ -6 - 12 \left( -1.5 \right) \geq -8 \][/tex]
[tex]\[ -6 + 18 \geq -8 \][/tex]
[tex]\[ 12 \geq -8 \][/tex]
Thus, 12 is indeed greater than or equal to -8, confirming that [tex]\( j = -1 \)[/tex] is a valid solution.
So any number that is less than or equal to 0, such as [tex]\( j = -1 \)[/tex], satisfies the inequality.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.