Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let’s determine the seventh term of the given geometric sequence [tex]\(\sqrt{6}, -2\sqrt{3}, 2\sqrt{6}, -4\sqrt{3}, \ldots \)[/tex].
1. First, identify the first term ([tex]\(a\)[/tex]) of the sequence:
[tex]\[ a = \sqrt{6} \][/tex]
2. To find the common ratio ([tex]\(r\)[/tex]), divide the second term by the first term:
[tex]\[ \text{second term} = -2\sqrt{3} \][/tex]
[tex]\[ r = \frac{-2\sqrt{3}}{\sqrt{6}} \][/tex]
3. Simplify the common ratio:
[tex]\[ r = \frac{-2\sqrt{3}}{\sqrt{6}} = \frac{-2\sqrt{3}}{\sqrt{3} \cdot \sqrt{2}} = \frac{-2\sqrt{3}}{\sqrt{3}\sqrt{2}} = \frac{-2}{\sqrt{2}} = -\sqrt{2} \][/tex]
4. Now, to find the 7th term ([tex]\(a_7\)[/tex]) of the geometric sequence, use the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
With [tex]\(a = \sqrt{6}\)[/tex], [tex]\(r = -\sqrt{2}\)[/tex], and [tex]\(n = 7\)[/tex]:
[tex]\[ a_7 = \sqrt{6} \cdot (-\sqrt{2})^{7-1} \][/tex]
5. Simplify the exponent:
[tex]\[ a_7 = \sqrt{6} \cdot (-\sqrt{2})^6 \][/tex]
6. Since [tex]\((- \sqrt{2})^6 = (\sqrt{2})^6\)[/tex] (an even power removes the negative sign) and [tex]\((\sqrt{2})^6 = (2^{1/2})^6 = 2^{3} = 8\)[/tex]:
[tex]\[ a_7 = \sqrt{6} \cdot 8 = 8 \cdot \sqrt{6} \][/tex]
Therefore, the seventh term of the sequence is:
[tex]\[ 8\sqrt{6} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{8\sqrt{6}} \][/tex]
1. First, identify the first term ([tex]\(a\)[/tex]) of the sequence:
[tex]\[ a = \sqrt{6} \][/tex]
2. To find the common ratio ([tex]\(r\)[/tex]), divide the second term by the first term:
[tex]\[ \text{second term} = -2\sqrt{3} \][/tex]
[tex]\[ r = \frac{-2\sqrt{3}}{\sqrt{6}} \][/tex]
3. Simplify the common ratio:
[tex]\[ r = \frac{-2\sqrt{3}}{\sqrt{6}} = \frac{-2\sqrt{3}}{\sqrt{3} \cdot \sqrt{2}} = \frac{-2\sqrt{3}}{\sqrt{3}\sqrt{2}} = \frac{-2}{\sqrt{2}} = -\sqrt{2} \][/tex]
4. Now, to find the 7th term ([tex]\(a_7\)[/tex]) of the geometric sequence, use the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
With [tex]\(a = \sqrt{6}\)[/tex], [tex]\(r = -\sqrt{2}\)[/tex], and [tex]\(n = 7\)[/tex]:
[tex]\[ a_7 = \sqrt{6} \cdot (-\sqrt{2})^{7-1} \][/tex]
5. Simplify the exponent:
[tex]\[ a_7 = \sqrt{6} \cdot (-\sqrt{2})^6 \][/tex]
6. Since [tex]\((- \sqrt{2})^6 = (\sqrt{2})^6\)[/tex] (an even power removes the negative sign) and [tex]\((\sqrt{2})^6 = (2^{1/2})^6 = 2^{3} = 8\)[/tex]:
[tex]\[ a_7 = \sqrt{6} \cdot 8 = 8 \cdot \sqrt{6} \][/tex]
Therefore, the seventh term of the sequence is:
[tex]\[ 8\sqrt{6} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{8\sqrt{6}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.