Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To address the problem of comparing the graphs of [tex]\( g(x) = f(x) + 2 \)[/tex] with [tex]\( f(x) \)[/tex]:
1. Identify the Transformation:
The equation [tex]\( g(x) = f(x) + 2 \)[/tex] indicates that we are adding a constant, 2, to the function [tex]\( f(x) \)[/tex]. This addition of a constant affects the graph of the function.
2. Understand the Effect of Adding a Constant:
When we add a positive constant to a function [tex]\( f(x) \)[/tex], it results in a vertical shift of the graph of the function. Specifically:
- Adding a positive constant [tex]\( ( + 2 ) \)[/tex] to [tex]\( f(x) \)[/tex] shifts the graph of the function upwards.
3. Determine the Direction of the Shift:
The term [tex]\( +2 \)[/tex] signifies the amount of shift:
- If the constant was negative ([tex]\( f(x) - 2 \)[/tex]), the graph would shift downwards.
- Since [tex]\( f(x) + 2 \)[/tex] is positive, the graph shifts upwards by 2 units.
4. Compare [tex]\( g(x) \)[/tex] to [tex]\( f(x) \)[/tex]:
Thus, the graph of [tex]\( g(x) \)[/tex] ([tex]\( g(x) = f(x) + 2 \)[/tex]) is the graph of [tex]\( f(x) \)[/tex] moved 2 units up in the vertical direction.
5. Evaluate All Given Options:
- A. The graph of [tex]\( g(x) \)[/tex] is shifted 2 units up. (Correct)
- B. The graph of [tex]\( g(x) \)[/tex] is shifted 2 units down. (Incorrect)
- C. The graph of [tex]\( g(x) \)[/tex] is shifted 2 units to the right. (Incorrect)
- D. The graph of [tex]\( g(x) \)[/tex] is vertically stretched by a factor of 2. (Incorrect)
Conclusion:
The best comparison is provided by option A: The graph of [tex]\( g(x) \)[/tex] is shifted 2 units up.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
1. Identify the Transformation:
The equation [tex]\( g(x) = f(x) + 2 \)[/tex] indicates that we are adding a constant, 2, to the function [tex]\( f(x) \)[/tex]. This addition of a constant affects the graph of the function.
2. Understand the Effect of Adding a Constant:
When we add a positive constant to a function [tex]\( f(x) \)[/tex], it results in a vertical shift of the graph of the function. Specifically:
- Adding a positive constant [tex]\( ( + 2 ) \)[/tex] to [tex]\( f(x) \)[/tex] shifts the graph of the function upwards.
3. Determine the Direction of the Shift:
The term [tex]\( +2 \)[/tex] signifies the amount of shift:
- If the constant was negative ([tex]\( f(x) - 2 \)[/tex]), the graph would shift downwards.
- Since [tex]\( f(x) + 2 \)[/tex] is positive, the graph shifts upwards by 2 units.
4. Compare [tex]\( g(x) \)[/tex] to [tex]\( f(x) \)[/tex]:
Thus, the graph of [tex]\( g(x) \)[/tex] ([tex]\( g(x) = f(x) + 2 \)[/tex]) is the graph of [tex]\( f(x) \)[/tex] moved 2 units up in the vertical direction.
5. Evaluate All Given Options:
- A. The graph of [tex]\( g(x) \)[/tex] is shifted 2 units up. (Correct)
- B. The graph of [tex]\( g(x) \)[/tex] is shifted 2 units down. (Incorrect)
- C. The graph of [tex]\( g(x) \)[/tex] is shifted 2 units to the right. (Incorrect)
- D. The graph of [tex]\( g(x) \)[/tex] is vertically stretched by a factor of 2. (Incorrect)
Conclusion:
The best comparison is provided by option A: The graph of [tex]\( g(x) \)[/tex] is shifted 2 units up.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.