Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Albert Einstein used the equation [tex]\(E = hv\)[/tex] to explain the photoelectric effect.
Here's the step-by-step reasoning:
1. Understanding the Terms:
- [tex]\(E\)[/tex] represents the energy of the ejected electrons.
- [tex]\(h\)[/tex] is Planck's constant.
- [tex]\(v\)[/tex] (often denoted as [tex]\(\nu\)[/tex]) is the frequency of the incident light.
2. The Photoelectric Effect:
- The photoelectric effect refers to the phenomenon where electrons are ejected from a metal surface when light of a certain frequency shines on it.
3. Einstein's Explanation:
- Einstein proposed that light could be thought of as being made up of packets or quanta of energy, which he called photons.
- The energy of each photon is directly proportional to the frequency of the light.
4. The Relationship:
- The proportionality constant is Planck's constant ([tex]\(h\)[/tex]).
- Thus, the energy ([tex]\(E\)[/tex]) of a photon is given by the equation [tex]\(E = hv\)[/tex].
Given these points, the correct equation used by Albert Einstein to explain the photoelectric effect is:
[tex]\[E = hv\][/tex]
So, the answer is [tex]\(E = hv\)[/tex].
Here's the step-by-step reasoning:
1. Understanding the Terms:
- [tex]\(E\)[/tex] represents the energy of the ejected electrons.
- [tex]\(h\)[/tex] is Planck's constant.
- [tex]\(v\)[/tex] (often denoted as [tex]\(\nu\)[/tex]) is the frequency of the incident light.
2. The Photoelectric Effect:
- The photoelectric effect refers to the phenomenon where electrons are ejected from a metal surface when light of a certain frequency shines on it.
3. Einstein's Explanation:
- Einstein proposed that light could be thought of as being made up of packets or quanta of energy, which he called photons.
- The energy of each photon is directly proportional to the frequency of the light.
4. The Relationship:
- The proportionality constant is Planck's constant ([tex]\(h\)[/tex]).
- Thus, the energy ([tex]\(E\)[/tex]) of a photon is given by the equation [tex]\(E = hv\)[/tex].
Given these points, the correct equation used by Albert Einstein to explain the photoelectric effect is:
[tex]\[E = hv\][/tex]
So, the answer is [tex]\(E = hv\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.