Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the value of the charge [tex]\( q_2 \)[/tex] that is repelling the [tex]\( +26.3 \mu C \)[/tex] charge [tex]\( q_1 \)[/tex] with a force of [tex]\( 0.615 \, \text{N} \)[/tex] at a distance of [tex]\( 0.750 \, \text{m} \)[/tex], we can use Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges.
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex].
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = 26.3 \mu \text{C} = 26.3 \times 10^{-6} \, \text{C} \)[/tex].
- [tex]\( F = 0.615 \, \text{N} \)[/tex].
- [tex]\( r = 0.750 \, \text{m} \)[/tex].
We need to solve for [tex]\( q_2 \)[/tex]:
1. First, rearrange Coulomb’s law to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
2. Substitute the known values into the equation:
[tex]\[ q_2 = \frac{0.615 \, \text{N} \cdot (0.750 \, \text{m})^2}{8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \cdot 26.3 \times 10^{-6} \, \text{C}} \][/tex]
3. Calculate the numerator and the denominator separately:
- Calculate [tex]\( (0.750 \, \text{m})^2 \)[/tex]:
[tex]\[ (0.750)^2 = 0.5625 \, \text{m}^2 \][/tex]
- Calculate the numerator:
[tex]\[ 0.615 \, \text{N} \cdot 0.5625 \, \text{m}^2 = 0.346875 \, \text{N} \cdot \text{m}^2 \][/tex]
- Calculate the denominator:
[tex]\[ 8.99 \times 10^9 \cdot 26.3 \times 10^{-6} \, \text{C} = 8.99 \times 10^9 \cdot 26.3 \times 10^{-6} \][/tex]
[tex]\[ 8.99 \times 26.3 \times 10^{9-6} = 236.577 \times 10^3 = 236577.000 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-1} \][/tex]
4. Divide the numerator by the denominator:
[tex]\[ q_2 = \frac{0.346875}{236577.000} \approx 1.4631275984723204 \times 10^{-6} \, \text{C} \][/tex]
Convert the result to microCoulombs:
[tex]\[ 1.4631275984723204 \times 10^{-6} \, \text{C} = 1.4631275984723204 \mu \text{C} \][/tex]
Since [tex]\( q_1 \)[/tex] is positive and the charges repel each other, [tex]\( q_2 \)[/tex] must also be positive.
Therefore, the value of [tex]\( q_2 \)[/tex] is approximately [tex]\( +1.4631275984723204 \times 10^{-6} \, \text{C} \)[/tex].
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges.
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex].
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = 26.3 \mu \text{C} = 26.3 \times 10^{-6} \, \text{C} \)[/tex].
- [tex]\( F = 0.615 \, \text{N} \)[/tex].
- [tex]\( r = 0.750 \, \text{m} \)[/tex].
We need to solve for [tex]\( q_2 \)[/tex]:
1. First, rearrange Coulomb’s law to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
2. Substitute the known values into the equation:
[tex]\[ q_2 = \frac{0.615 \, \text{N} \cdot (0.750 \, \text{m})^2}{8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \cdot 26.3 \times 10^{-6} \, \text{C}} \][/tex]
3. Calculate the numerator and the denominator separately:
- Calculate [tex]\( (0.750 \, \text{m})^2 \)[/tex]:
[tex]\[ (0.750)^2 = 0.5625 \, \text{m}^2 \][/tex]
- Calculate the numerator:
[tex]\[ 0.615 \, \text{N} \cdot 0.5625 \, \text{m}^2 = 0.346875 \, \text{N} \cdot \text{m}^2 \][/tex]
- Calculate the denominator:
[tex]\[ 8.99 \times 10^9 \cdot 26.3 \times 10^{-6} \, \text{C} = 8.99 \times 10^9 \cdot 26.3 \times 10^{-6} \][/tex]
[tex]\[ 8.99 \times 26.3 \times 10^{9-6} = 236.577 \times 10^3 = 236577.000 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-1} \][/tex]
4. Divide the numerator by the denominator:
[tex]\[ q_2 = \frac{0.346875}{236577.000} \approx 1.4631275984723204 \times 10^{-6} \, \text{C} \][/tex]
Convert the result to microCoulombs:
[tex]\[ 1.4631275984723204 \times 10^{-6} \, \text{C} = 1.4631275984723204 \mu \text{C} \][/tex]
Since [tex]\( q_1 \)[/tex] is positive and the charges repel each other, [tex]\( q_2 \)[/tex] must also be positive.
Therefore, the value of [tex]\( q_2 \)[/tex] is approximately [tex]\( +1.4631275984723204 \times 10^{-6} \, \text{C} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.