Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the acceleration due to gravity, we will utilize the relationship between velocity and time, which is given as a direct variation. This can be expressed with the formula:
[tex]\[ v = a \cdot t \][/tex]
where [tex]\( v \)[/tex] is velocity, [tex]\( a \)[/tex] is acceleration, and [tex]\( t \)[/tex] is time.
We can use any two points from the data table provided to calculate the acceleration. Here’s the data given:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (seconds)} & \text{Velocity (meters/second)} \\ \hline 0 & 0 \\ \hline 1 & 9.8 \\ \hline 2 & 19.6 \\ \hline 3 & 29.4 \\ \hline 4 & 39.2 \\ \hline \end{array} \][/tex]
We will choose any two consecutive data points to calculate the acceleration. Let's use the points at [tex]\( t = 1 \)[/tex] second and [tex]\( t = 2 \)[/tex] seconds.
For [tex]\( t = 1 \)[/tex] second:
- [tex]\( t_1 = 1 \)[/tex]
- [tex]\( v_1 = 9.8 \)[/tex]
For [tex]\( t = 2 \)[/tex] seconds:
- [tex]\( t_2 = 2 \)[/tex]
- [tex]\( v_2 = 19.6 \)[/tex]
Acceleration [tex]\( a \)[/tex] can be calculated using the formula:
[tex]\[ a = \frac{v_2 - v_1}{t_2 - t_1} \][/tex]
Plugging in the values:
[tex]\[ a = \frac{19.6 - 9.8}{2 - 1} \][/tex]
[tex]\[ a = \frac{9.8}{1} \][/tex]
[tex]\[ a = 9.8 \][/tex]
Therefore, the acceleration due to gravity of a falling object, which is the constant of variation, is:
[tex]\[ \boxed{9.8 \frac{m}{s^2}} \][/tex]
[tex]\[ v = a \cdot t \][/tex]
where [tex]\( v \)[/tex] is velocity, [tex]\( a \)[/tex] is acceleration, and [tex]\( t \)[/tex] is time.
We can use any two points from the data table provided to calculate the acceleration. Here’s the data given:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (seconds)} & \text{Velocity (meters/second)} \\ \hline 0 & 0 \\ \hline 1 & 9.8 \\ \hline 2 & 19.6 \\ \hline 3 & 29.4 \\ \hline 4 & 39.2 \\ \hline \end{array} \][/tex]
We will choose any two consecutive data points to calculate the acceleration. Let's use the points at [tex]\( t = 1 \)[/tex] second and [tex]\( t = 2 \)[/tex] seconds.
For [tex]\( t = 1 \)[/tex] second:
- [tex]\( t_1 = 1 \)[/tex]
- [tex]\( v_1 = 9.8 \)[/tex]
For [tex]\( t = 2 \)[/tex] seconds:
- [tex]\( t_2 = 2 \)[/tex]
- [tex]\( v_2 = 19.6 \)[/tex]
Acceleration [tex]\( a \)[/tex] can be calculated using the formula:
[tex]\[ a = \frac{v_2 - v_1}{t_2 - t_1} \][/tex]
Plugging in the values:
[tex]\[ a = \frac{19.6 - 9.8}{2 - 1} \][/tex]
[tex]\[ a = \frac{9.8}{1} \][/tex]
[tex]\[ a = 9.8 \][/tex]
Therefore, the acceleration due to gravity of a falling object, which is the constant of variation, is:
[tex]\[ \boxed{9.8 \frac{m}{s^2}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.