Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the acceleration due to gravity, we will utilize the relationship between velocity and time, which is given as a direct variation. This can be expressed with the formula:
[tex]\[ v = a \cdot t \][/tex]
where [tex]\( v \)[/tex] is velocity, [tex]\( a \)[/tex] is acceleration, and [tex]\( t \)[/tex] is time.
We can use any two points from the data table provided to calculate the acceleration. Here’s the data given:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (seconds)} & \text{Velocity (meters/second)} \\ \hline 0 & 0 \\ \hline 1 & 9.8 \\ \hline 2 & 19.6 \\ \hline 3 & 29.4 \\ \hline 4 & 39.2 \\ \hline \end{array} \][/tex]
We will choose any two consecutive data points to calculate the acceleration. Let's use the points at [tex]\( t = 1 \)[/tex] second and [tex]\( t = 2 \)[/tex] seconds.
For [tex]\( t = 1 \)[/tex] second:
- [tex]\( t_1 = 1 \)[/tex]
- [tex]\( v_1 = 9.8 \)[/tex]
For [tex]\( t = 2 \)[/tex] seconds:
- [tex]\( t_2 = 2 \)[/tex]
- [tex]\( v_2 = 19.6 \)[/tex]
Acceleration [tex]\( a \)[/tex] can be calculated using the formula:
[tex]\[ a = \frac{v_2 - v_1}{t_2 - t_1} \][/tex]
Plugging in the values:
[tex]\[ a = \frac{19.6 - 9.8}{2 - 1} \][/tex]
[tex]\[ a = \frac{9.8}{1} \][/tex]
[tex]\[ a = 9.8 \][/tex]
Therefore, the acceleration due to gravity of a falling object, which is the constant of variation, is:
[tex]\[ \boxed{9.8 \frac{m}{s^2}} \][/tex]
[tex]\[ v = a \cdot t \][/tex]
where [tex]\( v \)[/tex] is velocity, [tex]\( a \)[/tex] is acceleration, and [tex]\( t \)[/tex] is time.
We can use any two points from the data table provided to calculate the acceleration. Here’s the data given:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (seconds)} & \text{Velocity (meters/second)} \\ \hline 0 & 0 \\ \hline 1 & 9.8 \\ \hline 2 & 19.6 \\ \hline 3 & 29.4 \\ \hline 4 & 39.2 \\ \hline \end{array} \][/tex]
We will choose any two consecutive data points to calculate the acceleration. Let's use the points at [tex]\( t = 1 \)[/tex] second and [tex]\( t = 2 \)[/tex] seconds.
For [tex]\( t = 1 \)[/tex] second:
- [tex]\( t_1 = 1 \)[/tex]
- [tex]\( v_1 = 9.8 \)[/tex]
For [tex]\( t = 2 \)[/tex] seconds:
- [tex]\( t_2 = 2 \)[/tex]
- [tex]\( v_2 = 19.6 \)[/tex]
Acceleration [tex]\( a \)[/tex] can be calculated using the formula:
[tex]\[ a = \frac{v_2 - v_1}{t_2 - t_1} \][/tex]
Plugging in the values:
[tex]\[ a = \frac{19.6 - 9.8}{2 - 1} \][/tex]
[tex]\[ a = \frac{9.8}{1} \][/tex]
[tex]\[ a = 9.8 \][/tex]
Therefore, the acceleration due to gravity of a falling object, which is the constant of variation, is:
[tex]\[ \boxed{9.8 \frac{m}{s^2}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.