Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Simplify:

[tex]\[
\frac{6x^3 + 3x^2 - 12x}{3x}
\][/tex]

A. [tex]\(2x^2 + x - 4\)[/tex]

B. [tex]\(2x^3 + x + 4\)[/tex]

C. [tex]\(2x^2 + x - 4\)[/tex]

D. [tex]\(2x^2 - 4\)[/tex]


Sagot :

Certainly! Let's simplify the given expression step by step.

We have the expression:
[tex]$ \frac{6x^3 + 3x^2 - 12x}{3x} $[/tex]

### Step 1: Factor the numerator if possible
First, we'll look at the numerator [tex]\(6x^3 + 3x^2 - 12x\)[/tex] to see if we can factor out any common terms.

Notice that each term in the numerator has a factor of [tex]\(3x\)[/tex]:
[tex]\[ 6x^3 = 3x \cdot 2x^2 \][/tex]
[tex]\[ 3x^2 = 3x \cdot x \][/tex]
[tex]\[ -12x = 3x \cdot -4 \][/tex]

So we can factor [tex]\(3x\)[/tex] out of the entire numerator:
[tex]\[ 6x^3 + 3x^2 - 12x = 3x(2x^2 + x - 4) \][/tex]

### Step 2: Simplify the fraction
Now, substitute the factored form back into the original expression:
[tex]$ \frac{3x(2x^2 + x - 4)}{3x} $[/tex]

Since [tex]\(3x\)[/tex] is a common factor in both the numerator and the denominator, we can cancel them out:
[tex]\[ = \frac{\cancel{3x}(2x^2 + x - 4)}{\cancel{3x}} \][/tex]
[tex]\[ = 2x^2 + x - 4 \][/tex]

### Conclusion:
After simplifying, we obtain:
[tex]\[ \boxed{2x^2 + x - 4} \][/tex]

So, the correct simplified form of the given expression is:
[tex]\[ 2x^2 + x - 4 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.