Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the derivative of the function [tex]\( t(x) = 3|x| + \frac{5}{x} \)[/tex], let's proceed step-by-step.
1. Understand the absolute value function:
The function involves an absolute value [tex]\( |x| \)[/tex]. For [tex]\( |x| \)[/tex], the derivative is defined in two different forms:
- For [tex]\( x > 0 \)[/tex], [tex]\( \frac{d}{dx} |x| = 1 \)[/tex].
- For [tex]\( x < 0 \)[/tex], [tex]\( \frac{d}{dx} |x| = -1 \)[/tex].
2. Differentiate the first term: [tex]\( 3|x| \)[/tex]
We need to consider the cases for [tex]\( x > 0 \)[/tex] and [tex]\( x < 0 \)[/tex]:
- If [tex]\( x > 0 \)[/tex], [tex]\( \frac{d}{dx} (3|x|) = 3 \cdot 1 = 3 \)[/tex].
- If [tex]\( x < 0 \)[/tex], [tex]\( \frac{d}{dx} (3|x|) = 3 \cdot (-1) = -3 \)[/tex].
To handle these cases together, we use the signum function [tex]\( \text{sign}(x) \)[/tex]:
[tex]\[ \frac{d}{dx}(3|x|) = 3 \cdot \text{sign}(x) \][/tex]
3. Differentiate the second term: [tex]\( \frac{5}{x} \)[/tex]
For [tex]\( \frac{5}{x} \)[/tex], we use the power rule:
[tex]\[ \frac{d}{dx}\left(\frac{5}{x}\right) = \frac{d}{dx}(5x^{-1}) = 5 \cdot (-1)x^{-2} = -\frac{5}{x^2} \][/tex]
4. Combine the results:
Now we combine the derivatives of each term:
[tex]\[ t'(x) = \frac{d}{dx}(3|x|) + \frac{d}{dx}\left(\frac{5}{x}\right) \][/tex]
Plugging in our earlier results:
[tex]\[ t'(x) = 3 \cdot \text{sign}(x) - \frac{5}{x^2} \][/tex]
5. Express final derivative considering real and imaginary parts:
For a more precise representation, especially considering [tex]\( x \)[/tex] might have complex components:
[tex]\[ t'(x) = 3 \left(\text{Re}(x) \frac{d}{dx} \text{Re}(x) + \text{Im}(x) \frac{d}{dx} \text{Im}(x)\right) \frac{\text{sign}(x)}{x} - \frac{5}{x^2} \][/tex]
Therefore, the final derivative of the function [tex]\( t(x) \)[/tex] is:
[tex]\[ t'(x) = 3\left(\text{Re}(x) \frac{d}{dx} \text{Re}(x) + \text{Im}(x) \frac{d}{dx} \text{Im}(x)\right) \frac{\text{sign}(x)}{x} - \frac{5}{x^2} \][/tex]
1. Understand the absolute value function:
The function involves an absolute value [tex]\( |x| \)[/tex]. For [tex]\( |x| \)[/tex], the derivative is defined in two different forms:
- For [tex]\( x > 0 \)[/tex], [tex]\( \frac{d}{dx} |x| = 1 \)[/tex].
- For [tex]\( x < 0 \)[/tex], [tex]\( \frac{d}{dx} |x| = -1 \)[/tex].
2. Differentiate the first term: [tex]\( 3|x| \)[/tex]
We need to consider the cases for [tex]\( x > 0 \)[/tex] and [tex]\( x < 0 \)[/tex]:
- If [tex]\( x > 0 \)[/tex], [tex]\( \frac{d}{dx} (3|x|) = 3 \cdot 1 = 3 \)[/tex].
- If [tex]\( x < 0 \)[/tex], [tex]\( \frac{d}{dx} (3|x|) = 3 \cdot (-1) = -3 \)[/tex].
To handle these cases together, we use the signum function [tex]\( \text{sign}(x) \)[/tex]:
[tex]\[ \frac{d}{dx}(3|x|) = 3 \cdot \text{sign}(x) \][/tex]
3. Differentiate the second term: [tex]\( \frac{5}{x} \)[/tex]
For [tex]\( \frac{5}{x} \)[/tex], we use the power rule:
[tex]\[ \frac{d}{dx}\left(\frac{5}{x}\right) = \frac{d}{dx}(5x^{-1}) = 5 \cdot (-1)x^{-2} = -\frac{5}{x^2} \][/tex]
4. Combine the results:
Now we combine the derivatives of each term:
[tex]\[ t'(x) = \frac{d}{dx}(3|x|) + \frac{d}{dx}\left(\frac{5}{x}\right) \][/tex]
Plugging in our earlier results:
[tex]\[ t'(x) = 3 \cdot \text{sign}(x) - \frac{5}{x^2} \][/tex]
5. Express final derivative considering real and imaginary parts:
For a more precise representation, especially considering [tex]\( x \)[/tex] might have complex components:
[tex]\[ t'(x) = 3 \left(\text{Re}(x) \frac{d}{dx} \text{Re}(x) + \text{Im}(x) \frac{d}{dx} \text{Im}(x)\right) \frac{\text{sign}(x)}{x} - \frac{5}{x^2} \][/tex]
Therefore, the final derivative of the function [tex]\( t(x) \)[/tex] is:
[tex]\[ t'(x) = 3\left(\text{Re}(x) \frac{d}{dx} \text{Re}(x) + \text{Im}(x) \frac{d}{dx} \text{Im}(x)\right) \frac{\text{sign}(x)}{x} - \frac{5}{x^2} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.