Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly, let's complete the proof by filling in the correct reasons for each step.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Statement} & \multicolumn{1}{|c|}{Reason} \\
\hline [tex]$4x = 12x + 32$[/tex] & Given \\
\hline [tex]$-8x = 32$[/tex] & Subtraction Property of Equality \\
\hline [tex]$x = -4$[/tex] & Division Property of Equality \\
\hline
\end{tabular}
Here is the detailed step-by-step solution in words:
1. Given: The initial equation is given as [tex]\( 4x = 12x + 32 \)[/tex].
2. Subtraction Property of Equality: To isolate the term with [tex]\( x \)[/tex] on one side, subtract [tex]\( 12x \)[/tex] from both sides of the equation:
[tex]\[ 4x - 12x = 32 \][/tex]
[tex]\[ -8x = 32 \][/tex]
3. Division Property of Equality: Finally, to solve for [tex]\( x \)[/tex], divide both sides of the equation by [tex]\(-8\)[/tex]:
[tex]\[ x = \frac{32}{-8} \][/tex]
[tex]\[ x = -4 \][/tex]
So, each step is justified with the appropriate property of equality used during that step.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Statement} & \multicolumn{1}{|c|}{Reason} \\
\hline [tex]$4x = 12x + 32$[/tex] & Given \\
\hline [tex]$-8x = 32$[/tex] & Subtraction Property of Equality \\
\hline [tex]$x = -4$[/tex] & Division Property of Equality \\
\hline
\end{tabular}
Here is the detailed step-by-step solution in words:
1. Given: The initial equation is given as [tex]\( 4x = 12x + 32 \)[/tex].
2. Subtraction Property of Equality: To isolate the term with [tex]\( x \)[/tex] on one side, subtract [tex]\( 12x \)[/tex] from both sides of the equation:
[tex]\[ 4x - 12x = 32 \][/tex]
[tex]\[ -8x = 32 \][/tex]
3. Division Property of Equality: Finally, to solve for [tex]\( x \)[/tex], divide both sides of the equation by [tex]\(-8\)[/tex]:
[tex]\[ x = \frac{32}{-8} \][/tex]
[tex]\[ x = -4 \][/tex]
So, each step is justified with the appropriate property of equality used during that step.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.