Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the given equations one by one and match them to the correct solutions.
1. Equation: 4(3x + 5) - 3 = 9z - 7
- Solution: The x-value that satisfies this equation when expressed in terms of z is [tex]\([\frac{9z}{16} - \frac{7}{2}]\)[/tex]. Notice that this means x is expressed in terms of z. So, there isn't a single numerical value for x, but rather a relationship between x and z.
2. Equation: 5(x + 7) - 3(x - 4) = 7x + 2
- By solving this equation, we find [tex]\( x = 9 \)[/tex].
3. Equation: \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right)
- Solving for z, we get [tex]\( z = 15 \)[/tex].
Given the results we obtained:
- The equation [tex]\( 4(3x + 5) - 3 = 9z - 7 \)[/tex] pairs with [tex]\( \frac{9z}{16} - \frac{7}{2} \)[/tex].
- The equation [tex]\( 5(x + 7) - 3(x - 4) = 7x + 2 \)[/tex] pairs with [tex]\( x = 9 \)[/tex].
- The equation [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \)[/tex] pairs with [tex]\( z = 15 \)[/tex].
Now, let's match this with the given tiles:
- For the equation [tex]\( 4(3x + 5) - 3 = 9z - 7 \)[/tex]:
- This equation does not have a single numerical x-value in the given options since x depends on z. The solution is [tex]\( \frac{9z}{16} - \frac{7}{2} \)[/tex], but this form matches none of the provided x-values exactly.
- For the equation [tex]\( 5(x + 7) - 3(x - 4) = 7x + 2 \)[/tex]:
- We have [tex]\( x = 9 \)[/tex]. So, match this to [tex]\( x = 9 \)[/tex].
- For the equation [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \)[/tex]:
- We have [tex]\( z = 15 \)[/tex]. So, match this to [tex]\( z = 15 \)[/tex].
Valid matches:
- [tex]\( 4(3x + 5) - 3 = 9z - 7 \)[/tex]: [No direct numerical match]
- [tex]\( 5(x + 7) - 3(x - 4) = 7x + 2 \)[/tex]: [tex]\( x = 9 \)[/tex]
- [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \)[/tex]: [tex]\( z = 15 \)[/tex]
Thus:
- [tex]\( \underline{4(3x + 5) - 3 = 9z - 7 \)[/tex] belongs here}
- [tex]\(5(x + 7) - 3(x - 4) = 7x + 2 \longrightarrow x=9\)[/tex]
- [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \longrightarrow z=15\)[/tex]
1. Equation: 4(3x + 5) - 3 = 9z - 7
- Solution: The x-value that satisfies this equation when expressed in terms of z is [tex]\([\frac{9z}{16} - \frac{7}{2}]\)[/tex]. Notice that this means x is expressed in terms of z. So, there isn't a single numerical value for x, but rather a relationship between x and z.
2. Equation: 5(x + 7) - 3(x - 4) = 7x + 2
- By solving this equation, we find [tex]\( x = 9 \)[/tex].
3. Equation: \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right)
- Solving for z, we get [tex]\( z = 15 \)[/tex].
Given the results we obtained:
- The equation [tex]\( 4(3x + 5) - 3 = 9z - 7 \)[/tex] pairs with [tex]\( \frac{9z}{16} - \frac{7}{2} \)[/tex].
- The equation [tex]\( 5(x + 7) - 3(x - 4) = 7x + 2 \)[/tex] pairs with [tex]\( x = 9 \)[/tex].
- The equation [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \)[/tex] pairs with [tex]\( z = 15 \)[/tex].
Now, let's match this with the given tiles:
- For the equation [tex]\( 4(3x + 5) - 3 = 9z - 7 \)[/tex]:
- This equation does not have a single numerical x-value in the given options since x depends on z. The solution is [tex]\( \frac{9z}{16} - \frac{7}{2} \)[/tex], but this form matches none of the provided x-values exactly.
- For the equation [tex]\( 5(x + 7) - 3(x - 4) = 7x + 2 \)[/tex]:
- We have [tex]\( x = 9 \)[/tex]. So, match this to [tex]\( x = 9 \)[/tex].
- For the equation [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \)[/tex]:
- We have [tex]\( z = 15 \)[/tex]. So, match this to [tex]\( z = 15 \)[/tex].
Valid matches:
- [tex]\( 4(3x + 5) - 3 = 9z - 7 \)[/tex]: [No direct numerical match]
- [tex]\( 5(x + 7) - 3(x - 4) = 7x + 2 \)[/tex]: [tex]\( x = 9 \)[/tex]
- [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \)[/tex]: [tex]\( z = 15 \)[/tex]
Thus:
- [tex]\( \underline{4(3x + 5) - 3 = 9z - 7 \)[/tex] belongs here}
- [tex]\(5(x + 7) - 3(x - 4) = 7x + 2 \longrightarrow x=9\)[/tex]
- [tex]\( \frac{1}{3}(5z - 9) = 2\left(\frac{1}{3}z + 6\right) \longrightarrow z=15\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.