At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's apply Newton's Method step-by-step to the function [tex]\( f(x) = 1 - 2x\sin(x) \)[/tex] with the initial guess [tex]\( x_0 = 7 \)[/tex].
Firstly, we need to find the derivative of the function [tex]\( f(x) \)[/tex]. The derivative, [tex]\( f'(x) \)[/tex], is calculated as:
[tex]\[ f'(x) = \frac{d}{dx} (1 - 2x\sin(x)) = -2(\sin(x) + x\cos(x)). \][/tex]
Now, using Newton's Method formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \][/tex]
we proceed iteratively.
### Step 1: Calculate [tex]\( x_1 \)[/tex]
Given [tex]\( x_0 = 7 \)[/tex]:
[tex]\[ f(x_0) = 1 - 2 \cdot 7 \cdot \sin(7), \][/tex]
[tex]\[ f'(x_0) = -2 (\sin(7) + 7 \cdot \cos(7)). \][/tex]
Using Newton's Method:
[tex]\[ x_1 = 7 - \frac{1 - 2 \cdot 7 \cdot \sin(7)}{-2 (\sin(7) + 7 \cdot \cos(7))} \approx 6.309286. \][/tex]
### Step 2: Calculate [tex]\( x_2 \)[/tex]
Given [tex]\( x_1 \approx 6.309286 \)[/tex]:
[tex]\[ f(x_1) = 1 - 2 \cdot 6.309286 \cdot \sin(6.309286), \][/tex]
[tex]\[ f'(x_1) = -2 (\sin(6.309286) + 6.309286 \cdot \cos(6.309286)). \][/tex]
Using Newton's Method:
[tex]\[ x_2 = 6.309286 - \frac{1 - 2 \cdot 6.309286 \cdot \sin(6.309286)}{-2 (\sin(6.309286) + 6.309286 \cdot \cos(6.309286))} \approx 6.362236. \][/tex]
### Step 3: Calculate [tex]\( x_3 \)[/tex]
Given [tex]\( x_2 \approx 6.362236 \)[/tex]:
[tex]\[ f(x_2) = 1 - 2 \cdot 6.362236 \cdot \sin(6.362236), \][/tex]
[tex]\[ f'(x_2) = -2 (\sin(6.362236) + 6.362236 \cdot \cos(6.362236)). \][/tex]
Using Newton's Method:
[tex]\[ x_3 = 6.362236 - \frac{1 - 2 \cdot 6.362236 \cdot \sin(6.362236)}{-2 (\sin(6.362236) + 6.362236 \cdot \cos(6.362236))} \approx 6.361860. \][/tex]
In summary, the approximations are:
[tex]\[ \begin{array}{l} x_1 \approx 6.309286 \\ x_2 \approx 6.362236 \\ x_3 \approx 6.361860 \\ \end{array} \][/tex]
Firstly, we need to find the derivative of the function [tex]\( f(x) \)[/tex]. The derivative, [tex]\( f'(x) \)[/tex], is calculated as:
[tex]\[ f'(x) = \frac{d}{dx} (1 - 2x\sin(x)) = -2(\sin(x) + x\cos(x)). \][/tex]
Now, using Newton's Method formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \][/tex]
we proceed iteratively.
### Step 1: Calculate [tex]\( x_1 \)[/tex]
Given [tex]\( x_0 = 7 \)[/tex]:
[tex]\[ f(x_0) = 1 - 2 \cdot 7 \cdot \sin(7), \][/tex]
[tex]\[ f'(x_0) = -2 (\sin(7) + 7 \cdot \cos(7)). \][/tex]
Using Newton's Method:
[tex]\[ x_1 = 7 - \frac{1 - 2 \cdot 7 \cdot \sin(7)}{-2 (\sin(7) + 7 \cdot \cos(7))} \approx 6.309286. \][/tex]
### Step 2: Calculate [tex]\( x_2 \)[/tex]
Given [tex]\( x_1 \approx 6.309286 \)[/tex]:
[tex]\[ f(x_1) = 1 - 2 \cdot 6.309286 \cdot \sin(6.309286), \][/tex]
[tex]\[ f'(x_1) = -2 (\sin(6.309286) + 6.309286 \cdot \cos(6.309286)). \][/tex]
Using Newton's Method:
[tex]\[ x_2 = 6.309286 - \frac{1 - 2 \cdot 6.309286 \cdot \sin(6.309286)}{-2 (\sin(6.309286) + 6.309286 \cdot \cos(6.309286))} \approx 6.362236. \][/tex]
### Step 3: Calculate [tex]\( x_3 \)[/tex]
Given [tex]\( x_2 \approx 6.362236 \)[/tex]:
[tex]\[ f(x_2) = 1 - 2 \cdot 6.362236 \cdot \sin(6.362236), \][/tex]
[tex]\[ f'(x_2) = -2 (\sin(6.362236) + 6.362236 \cdot \cos(6.362236)). \][/tex]
Using Newton's Method:
[tex]\[ x_3 = 6.362236 - \frac{1 - 2 \cdot 6.362236 \cdot \sin(6.362236)}{-2 (\sin(6.362236) + 6.362236 \cdot \cos(6.362236))} \approx 6.361860. \][/tex]
In summary, the approximations are:
[tex]\[ \begin{array}{l} x_1 \approx 6.309286 \\ x_2 \approx 6.362236 \\ x_3 \approx 6.361860 \\ \end{array} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.