Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the ratio in which the line segment joining the points [tex]\((2, -4)\)[/tex] and [tex]\((5, 8)\)[/tex] is divided by the [tex]\(x\)[/tex]-axis, follow these steps:
1. Identify the coordinates of the given points:
- Point [tex]\(A\)[/tex] is [tex]\((2, -4)\)[/tex]
- Point [tex]\(B\)[/tex] is [tex]\((5, 8)\)[/tex]
2. Determine the coordinates where the line segment intersects the [tex]\(x\)[/tex]-axis:
- Let the coordinates of the intersection point on the [tex]\(x\)[/tex]-axis be [tex]\((x, 0)\)[/tex].
3. Use the section formula to find the ratio:
- The section formula states that if a point [tex]\((P_x, P_y)\)[/tex] divides a line segment joining [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex], then [tex]\(P_x = \frac{mx_2 + nx_1}{m+n}\)[/tex] and [tex]\(P_y = \frac{my_2 + ny_1}{m+n}\)[/tex].
4. Set up the equation for the [tex]\(y\)[/tex]-coordinate:
- Since the [tex]\(x\)[/tex]-axis has [tex]\(y = 0\)[/tex],
- Use the [tex]\(y\)[/tex]-coordinate section formula: [tex]\[ 0 = \frac{m \cdot 8 + n \cdot (-4)}{m + n} \][/tex]
5. Solve for the ratio [tex]\(m:n\)[/tex]:
- Simplify the equation: [tex]\[ 0 = 8m - 4n \][/tex]
- This implies [tex]\(8m = 4n\)[/tex].
6. Find the relationship between [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:
- Divide both sides by 4: [tex]\[ 2m = n \][/tex]
- Hence, [tex]\( \frac{m}{n} = \frac{1}{2} \)[/tex].
So, the ratio in which the line segment joining the points [tex]\((2, -4)\)[/tex] and [tex]\((5, 8)\)[/tex] is divided by the [tex]\(x\)[/tex]-axis is [tex]\(\frac{1}{2}\)[/tex], or equivalently [tex]\(1:2\)[/tex].
To put it explicitly, the division of the segment by the [tex]\(x\)[/tex]-axis is:
- Ratio [tex]\(m:n = \frac{1}{2}\)[/tex]
- Values [tex]\(m = 4\)[/tex], [tex]\(n = 8\)[/tex]
Hence, the line segment is divided in the ratio [tex]\(1:2\)[/tex] with specific values [tex]\(4\)[/tex] and [tex]\(8\)[/tex].
1. Identify the coordinates of the given points:
- Point [tex]\(A\)[/tex] is [tex]\((2, -4)\)[/tex]
- Point [tex]\(B\)[/tex] is [tex]\((5, 8)\)[/tex]
2. Determine the coordinates where the line segment intersects the [tex]\(x\)[/tex]-axis:
- Let the coordinates of the intersection point on the [tex]\(x\)[/tex]-axis be [tex]\((x, 0)\)[/tex].
3. Use the section formula to find the ratio:
- The section formula states that if a point [tex]\((P_x, P_y)\)[/tex] divides a line segment joining [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex], then [tex]\(P_x = \frac{mx_2 + nx_1}{m+n}\)[/tex] and [tex]\(P_y = \frac{my_2 + ny_1}{m+n}\)[/tex].
4. Set up the equation for the [tex]\(y\)[/tex]-coordinate:
- Since the [tex]\(x\)[/tex]-axis has [tex]\(y = 0\)[/tex],
- Use the [tex]\(y\)[/tex]-coordinate section formula: [tex]\[ 0 = \frac{m \cdot 8 + n \cdot (-4)}{m + n} \][/tex]
5. Solve for the ratio [tex]\(m:n\)[/tex]:
- Simplify the equation: [tex]\[ 0 = 8m - 4n \][/tex]
- This implies [tex]\(8m = 4n\)[/tex].
6. Find the relationship between [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:
- Divide both sides by 4: [tex]\[ 2m = n \][/tex]
- Hence, [tex]\( \frac{m}{n} = \frac{1}{2} \)[/tex].
So, the ratio in which the line segment joining the points [tex]\((2, -4)\)[/tex] and [tex]\((5, 8)\)[/tex] is divided by the [tex]\(x\)[/tex]-axis is [tex]\(\frac{1}{2}\)[/tex], or equivalently [tex]\(1:2\)[/tex].
To put it explicitly, the division of the segment by the [tex]\(x\)[/tex]-axis is:
- Ratio [tex]\(m:n = \frac{1}{2}\)[/tex]
- Values [tex]\(m = 4\)[/tex], [tex]\(n = 8\)[/tex]
Hence, the line segment is divided in the ratio [tex]\(1:2\)[/tex] with specific values [tex]\(4\)[/tex] and [tex]\(8\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.