Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's examine the expression step-by-step:
Given:
[tex]\[ x^4 - 3x^2y^2 + 9y^4 \][/tex]
1. Identify Terms:
The expression involves three distinct terms:
- The first term is [tex]\(x^4\)[/tex].
- The second term is [tex]\(-3x^2y^2\)[/tex].
- The third term is [tex]\(9y^4\)[/tex].
2. Break Down the Expression:
a. [tex]\(x^4\)[/tex]:
- This is a pure term involving [tex]\(x\)[/tex] raised to the fourth power. It indicates the fourth-degree polynomial in [tex]\(x\)[/tex].
b. [tex]\(-3x^2y^2\)[/tex]:
- The middle term mixes both variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. It is a product of [tex]\(x^2\)[/tex] and [tex]\(y^2\)[/tex] multiplied by [tex]\(-3\)[/tex]. This is a cross-product term.
c. [tex]\(9y^4\)[/tex]:
- This is a pure term involving [tex]\(y\)[/tex] raised to the fourth power. It indicates the fourth-degree polynomial in [tex]\(y\)[/tex], scaled by a factor of 9.
3. Combining the Terms:
Each term is clearly a part of a larger polynomial expression. When combined together:
[tex]\[ x^4 - 3x^2y^2 + 9y^4 \][/tex]
we are looking at a polynomial of degree 4 involving two variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
4. Symmetry and Degrees:
Observe that:
- Each term in the expression is of degree 4.
- The expression [tex]\(x^4\)[/tex] is symmetric in [tex]\(x\)[/tex].
- The term [tex]\(-3x^2y^2\)[/tex] involves a symmetric combination of squared terms.
- The expression [tex]\(9y^4\)[/tex] is symmetric in [tex]\(y\)[/tex].
So, the resultant polynomial [tex]\(x^4 - 3x^2y^2 + 9y^4\)[/tex] is a fourth-degree polynomial with mixed terms for [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
This detailed breakdown illustrates how each component contributes to the overall polynomial structure.
Given:
[tex]\[ x^4 - 3x^2y^2 + 9y^4 \][/tex]
1. Identify Terms:
The expression involves three distinct terms:
- The first term is [tex]\(x^4\)[/tex].
- The second term is [tex]\(-3x^2y^2\)[/tex].
- The third term is [tex]\(9y^4\)[/tex].
2. Break Down the Expression:
a. [tex]\(x^4\)[/tex]:
- This is a pure term involving [tex]\(x\)[/tex] raised to the fourth power. It indicates the fourth-degree polynomial in [tex]\(x\)[/tex].
b. [tex]\(-3x^2y^2\)[/tex]:
- The middle term mixes both variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. It is a product of [tex]\(x^2\)[/tex] and [tex]\(y^2\)[/tex] multiplied by [tex]\(-3\)[/tex]. This is a cross-product term.
c. [tex]\(9y^4\)[/tex]:
- This is a pure term involving [tex]\(y\)[/tex] raised to the fourth power. It indicates the fourth-degree polynomial in [tex]\(y\)[/tex], scaled by a factor of 9.
3. Combining the Terms:
Each term is clearly a part of a larger polynomial expression. When combined together:
[tex]\[ x^4 - 3x^2y^2 + 9y^4 \][/tex]
we are looking at a polynomial of degree 4 involving two variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
4. Symmetry and Degrees:
Observe that:
- Each term in the expression is of degree 4.
- The expression [tex]\(x^4\)[/tex] is symmetric in [tex]\(x\)[/tex].
- The term [tex]\(-3x^2y^2\)[/tex] involves a symmetric combination of squared terms.
- The expression [tex]\(9y^4\)[/tex] is symmetric in [tex]\(y\)[/tex].
So, the resultant polynomial [tex]\(x^4 - 3x^2y^2 + 9y^4\)[/tex] is a fourth-degree polynomial with mixed terms for [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
This detailed breakdown illustrates how each component contributes to the overall polynomial structure.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.