Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the changes that occur when the temperature of the system described by the equation
[tex]\[ N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + \text{energy} \][/tex]
is decreased, we need to consider how equilibrium is affected by changes in temperature according to Le Chatelier's principle.
1. Understanding the Reaction:
The chemical equilibrium reaction is:
[tex]\[ N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + \text{energy} \][/tex]
This reaction is exothermic, which means it releases energy in the form of heat as it proceeds in the forward direction (towards the formation of [tex]$NH_3$[/tex]).
2. Le Chatelier's Principle:
Le Chatelier's principle states that if an external change is applied to a system at equilibrium, the system will adjust itself to counteract that change. Specifically, for temperature changes:
- If the temperature is increased, the equilibrium will shift towards the endothermic direction (the direction that absorbs heat) to counteract the added heat.
- Conversely, if the temperature is decreased, the equilibrium will shift towards the exothermic direction (the direction that releases heat) to counteract the loss of heat.
3. Applying the Principle:
In this case, since the forward reaction (formation of [tex]$NH_3$[/tex]) is exothermic and releases energy, decreasing the temperature would cause the equilibrium to shift towards the formation of more [tex]$NH_3$[/tex]. The system will do this in an effort to release more heat and counteract the temperature decrease.
4. Effect on Concentrations:
- The concentration of [tex]$NH_3(g)$[/tex] will increase because the equilibrium shifts toward the product side to produce more [tex]$NH_3$[/tex].
- As a result, the reactants [tex]$(N_2(g) \text{ and } H_2(g))$[/tex] will be consumed to form more [tex]$NH_3$[/tex].
- Thus, the concentration of [tex]$H_2(g)$[/tex] will decrease.
Given the changes described:
- The concentration of [tex]$H_2(g)$[/tex] decreases.
- The concentration of [tex]$NH_3(g)$[/tex] increases.
Therefore, the correct answer is:
D) The concentration of [tex]$H_2(g)$[/tex] decreases and the concentration of [tex]$NH_3(g)$[/tex] increases.
[tex]\[ N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + \text{energy} \][/tex]
is decreased, we need to consider how equilibrium is affected by changes in temperature according to Le Chatelier's principle.
1. Understanding the Reaction:
The chemical equilibrium reaction is:
[tex]\[ N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + \text{energy} \][/tex]
This reaction is exothermic, which means it releases energy in the form of heat as it proceeds in the forward direction (towards the formation of [tex]$NH_3$[/tex]).
2. Le Chatelier's Principle:
Le Chatelier's principle states that if an external change is applied to a system at equilibrium, the system will adjust itself to counteract that change. Specifically, for temperature changes:
- If the temperature is increased, the equilibrium will shift towards the endothermic direction (the direction that absorbs heat) to counteract the added heat.
- Conversely, if the temperature is decreased, the equilibrium will shift towards the exothermic direction (the direction that releases heat) to counteract the loss of heat.
3. Applying the Principle:
In this case, since the forward reaction (formation of [tex]$NH_3$[/tex]) is exothermic and releases energy, decreasing the temperature would cause the equilibrium to shift towards the formation of more [tex]$NH_3$[/tex]. The system will do this in an effort to release more heat and counteract the temperature decrease.
4. Effect on Concentrations:
- The concentration of [tex]$NH_3(g)$[/tex] will increase because the equilibrium shifts toward the product side to produce more [tex]$NH_3$[/tex].
- As a result, the reactants [tex]$(N_2(g) \text{ and } H_2(g))$[/tex] will be consumed to form more [tex]$NH_3$[/tex].
- Thus, the concentration of [tex]$H_2(g)$[/tex] will decrease.
Given the changes described:
- The concentration of [tex]$H_2(g)$[/tex] decreases.
- The concentration of [tex]$NH_3(g)$[/tex] increases.
Therefore, the correct answer is:
D) The concentration of [tex]$H_2(g)$[/tex] decreases and the concentration of [tex]$NH_3(g)$[/tex] increases.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.