Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve for the equation of the line that is perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] and passes through the point [tex]\( (2, 7) \)[/tex], we need to follow these steps:
1. Identify the slope of the given line:
The equation of the given line is [tex]\( y = -\frac{1}{2} x - 5 \)[/tex]. From this equation, we can see that the slope [tex]\( m_1 \)[/tex] of the given line is [tex]\( -\frac{1}{2} \)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the given line. So, if the slope of the given line is [tex]\( m_1 = -\frac{1}{2} \)[/tex], then the slope [tex]\( m_2 \)[/tex] of the perpendicular line is:
[tex]\[ m_2 = -\frac{1}{m_1} = -\frac{1}{-\frac{1}{2}} = 2 \][/tex]
3. Use the point-slope form of the equation:
We have the slope [tex]\( m_2 = 2 \)[/tex] and the point [tex]\( (2, 7) \)[/tex]. The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point [tex]\((2, 7)\)[/tex].
4. Substitute the slope and point into the point-slope form:
[tex]\[ y - 7 = 2(x - 2) \][/tex]
5. Simplify the equation to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 7 = 2(x - 2) \][/tex]
[tex]\[ y - 7 = 2x - 4 \][/tex]
[tex]\[ y = 2x - 4 + 7 \][/tex]
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation of the line perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] and passing through the point [tex]\( (2, 7) \)[/tex] in slope-intercept form is:
[tex]\[ y = 2x + 3 \][/tex]
1. Identify the slope of the given line:
The equation of the given line is [tex]\( y = -\frac{1}{2} x - 5 \)[/tex]. From this equation, we can see that the slope [tex]\( m_1 \)[/tex] of the given line is [tex]\( -\frac{1}{2} \)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the given line. So, if the slope of the given line is [tex]\( m_1 = -\frac{1}{2} \)[/tex], then the slope [tex]\( m_2 \)[/tex] of the perpendicular line is:
[tex]\[ m_2 = -\frac{1}{m_1} = -\frac{1}{-\frac{1}{2}} = 2 \][/tex]
3. Use the point-slope form of the equation:
We have the slope [tex]\( m_2 = 2 \)[/tex] and the point [tex]\( (2, 7) \)[/tex]. The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point [tex]\((2, 7)\)[/tex].
4. Substitute the slope and point into the point-slope form:
[tex]\[ y - 7 = 2(x - 2) \][/tex]
5. Simplify the equation to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 7 = 2(x - 2) \][/tex]
[tex]\[ y - 7 = 2x - 4 \][/tex]
[tex]\[ y = 2x - 4 + 7 \][/tex]
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation of the line perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] and passing through the point [tex]\( (2, 7) \)[/tex] in slope-intercept form is:
[tex]\[ y = 2x + 3 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.