Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve the quadratic equation by graphing it. Select all possible answers.

[tex]\[ 4x^2 + 6x = 4 \][/tex]

x = ?

A. 0.5
B. -2
C. 0.75
D. -1.5
E. -2.25
F. 0
G. No real solutions


Sagot :

To solve the quadratic equation [tex]\(4x^2 + 6x = 4\)[/tex], let's proceed step by step.

1. Rewrite the equation in standard form:
The equation is [tex]\(4x^2 + 6x = 4\)[/tex]. We need to move all terms to one side to set the equation equal to zero.
[tex]\[ 4x^2 + 6x - 4 = 0 \][/tex]

2. Identify the coefficients:
For a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex]:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 6\)[/tex]
- [tex]\(c = -4\)[/tex]

3. Use the quadratic formula to find the roots:
The quadratic formula is given by:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Plugging in the coefficients [tex]\(a = 4\)[/tex], [tex]\(b = 6\)[/tex], and [tex]\(c = -4\)[/tex]:

[tex]\[ x = \frac{{-6 \pm \sqrt{{6^2 - 4 \cdot 4 \cdot (-4)}}}}{2 \cdot 4} \][/tex]
Simplify inside the square root:
[tex]\[ x = \frac{{-6 \pm \sqrt{{36 + 64}}}}{8} \][/tex]
[tex]\[ x = \frac{{-6 \pm \sqrt{{100}}}}{8} \][/tex]

Since [tex]\(\sqrt{100} = 10\)[/tex], we can continue:
[tex]\[ x = \frac{{-6 \pm 10}}{8} \][/tex]

4. Calculate the two possible solutions:
- For the positive root:
[tex]\[ x = \frac{{-6 + 10}}{8} = \frac{4}{8} = 0.5 \][/tex]
- For the negative root:
[tex]\[ x = \frac{{-6 - 10}}{8} = \frac{-16}{8} = -2 \][/tex]

5. Conclusion:
The solutions to the quadratic equation [tex]\(4x^2 + 6x - 4 = 0\)[/tex] are:
[tex]\[ x = 0.5 \quad \text{and} \quad x = -2 \][/tex]

Therefore, the correct answers to the question are [tex]\(0.5\)[/tex] and [tex]\(-2\)[/tex]. The other given options [tex]\(0.75\)[/tex], [tex]\(-1.5\)[/tex], [tex]\(-2.25\)[/tex], [tex]\(0\)[/tex], and "No real solutions" are incorrect.