Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the expression that is equal to [tex]\(\frac{4p^2 + 32p}{p-2} \cdot \frac{p^2 + p - 6}{2p^3 + 16p^2}\)[/tex], follow these detailed steps to simplify it:
1. Factorize each part of the expression:
- For the numerator [tex]\(4p^2 + 32p\)[/tex]:
[tex]\[ 4p^2 + 32p = 4p(p + 8) \][/tex]
- For the denominator [tex]\(p - 2\)[/tex]:
(It is already in its simplest form.)
- For the numerator [tex]\(p^2 + p - 6\)[/tex]:
[tex]\[ p^2 + p - 6 = (p+3)(p-2) \][/tex]
- For the denominator [tex]\(2p^3 + 16p^2\)[/tex]:
[tex]\[ 2p^3 + 16p^2 = 2p^2(p + 8) \][/tex]
2. Rewrite the given expression with the factored terms:
[tex]\[ \frac{4p(p + 8)}{p - 2} \cdot \frac{(p + 3)(p - 2)}{2p^2(p + 8)} \][/tex]
3. Cancel out common factors:
- The term [tex]\((p - 2)\)[/tex] appears in both the numerator and the denominator and thus can be cancelled out.
- The term [tex]\((p + 8)\)[/tex] also appears in both the numerator and the denominator and thus can be cancelled out.
[tex]\[ \frac{4p \cancel{(p + 8)}}{\cancel{p - 2}} \cdot \frac{(p + 3)\cancel{(p - 2)}}{2p^2 \cancel{(p + 8)}} = \frac{4p}{1} \cdot \frac{(p + 3)}{2p^2} \][/tex]
4. Combine and simplify the remaining terms:
[tex]\[ \frac{4p(p + 3)}{2p^2} = \frac{4(p + 3)}{2p} = \frac{2(p + 3)}{p} \][/tex]
5. Final simplified expression:
This shows that the given expression simplifies to:
[tex]\[ \boxed{\frac{2(p+3)}{p}} \][/tex]
After following these steps, we find that the expression equal to [tex]\(\frac{4p^2 + 32p}{p-2} \cdot \frac{p^2 + p - 6}{2p^3 + 16p^2}\)[/tex] is [tex]\(\frac{2(p+3)}{p}\)[/tex].
1. Factorize each part of the expression:
- For the numerator [tex]\(4p^2 + 32p\)[/tex]:
[tex]\[ 4p^2 + 32p = 4p(p + 8) \][/tex]
- For the denominator [tex]\(p - 2\)[/tex]:
(It is already in its simplest form.)
- For the numerator [tex]\(p^2 + p - 6\)[/tex]:
[tex]\[ p^2 + p - 6 = (p+3)(p-2) \][/tex]
- For the denominator [tex]\(2p^3 + 16p^2\)[/tex]:
[tex]\[ 2p^3 + 16p^2 = 2p^2(p + 8) \][/tex]
2. Rewrite the given expression with the factored terms:
[tex]\[ \frac{4p(p + 8)}{p - 2} \cdot \frac{(p + 3)(p - 2)}{2p^2(p + 8)} \][/tex]
3. Cancel out common factors:
- The term [tex]\((p - 2)\)[/tex] appears in both the numerator and the denominator and thus can be cancelled out.
- The term [tex]\((p + 8)\)[/tex] also appears in both the numerator and the denominator and thus can be cancelled out.
[tex]\[ \frac{4p \cancel{(p + 8)}}{\cancel{p - 2}} \cdot \frac{(p + 3)\cancel{(p - 2)}}{2p^2 \cancel{(p + 8)}} = \frac{4p}{1} \cdot \frac{(p + 3)}{2p^2} \][/tex]
4. Combine and simplify the remaining terms:
[tex]\[ \frac{4p(p + 3)}{2p^2} = \frac{4(p + 3)}{2p} = \frac{2(p + 3)}{p} \][/tex]
5. Final simplified expression:
This shows that the given expression simplifies to:
[tex]\[ \boxed{\frac{2(p+3)}{p}} \][/tex]
After following these steps, we find that the expression equal to [tex]\(\frac{4p^2 + 32p}{p-2} \cdot \frac{p^2 + p - 6}{2p^3 + 16p^2}\)[/tex] is [tex]\(\frac{2(p+3)}{p}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.