Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the expression that is equal to [tex]\(\frac{4p^2 + 32p}{p-2} \cdot \frac{p^2 + p - 6}{2p^3 + 16p^2}\)[/tex], follow these detailed steps to simplify it:
1. Factorize each part of the expression:
- For the numerator [tex]\(4p^2 + 32p\)[/tex]:
[tex]\[ 4p^2 + 32p = 4p(p + 8) \][/tex]
- For the denominator [tex]\(p - 2\)[/tex]:
(It is already in its simplest form.)
- For the numerator [tex]\(p^2 + p - 6\)[/tex]:
[tex]\[ p^2 + p - 6 = (p+3)(p-2) \][/tex]
- For the denominator [tex]\(2p^3 + 16p^2\)[/tex]:
[tex]\[ 2p^3 + 16p^2 = 2p^2(p + 8) \][/tex]
2. Rewrite the given expression with the factored terms:
[tex]\[ \frac{4p(p + 8)}{p - 2} \cdot \frac{(p + 3)(p - 2)}{2p^2(p + 8)} \][/tex]
3. Cancel out common factors:
- The term [tex]\((p - 2)\)[/tex] appears in both the numerator and the denominator and thus can be cancelled out.
- The term [tex]\((p + 8)\)[/tex] also appears in both the numerator and the denominator and thus can be cancelled out.
[tex]\[ \frac{4p \cancel{(p + 8)}}{\cancel{p - 2}} \cdot \frac{(p + 3)\cancel{(p - 2)}}{2p^2 \cancel{(p + 8)}} = \frac{4p}{1} \cdot \frac{(p + 3)}{2p^2} \][/tex]
4. Combine and simplify the remaining terms:
[tex]\[ \frac{4p(p + 3)}{2p^2} = \frac{4(p + 3)}{2p} = \frac{2(p + 3)}{p} \][/tex]
5. Final simplified expression:
This shows that the given expression simplifies to:
[tex]\[ \boxed{\frac{2(p+3)}{p}} \][/tex]
After following these steps, we find that the expression equal to [tex]\(\frac{4p^2 + 32p}{p-2} \cdot \frac{p^2 + p - 6}{2p^3 + 16p^2}\)[/tex] is [tex]\(\frac{2(p+3)}{p}\)[/tex].
1. Factorize each part of the expression:
- For the numerator [tex]\(4p^2 + 32p\)[/tex]:
[tex]\[ 4p^2 + 32p = 4p(p + 8) \][/tex]
- For the denominator [tex]\(p - 2\)[/tex]:
(It is already in its simplest form.)
- For the numerator [tex]\(p^2 + p - 6\)[/tex]:
[tex]\[ p^2 + p - 6 = (p+3)(p-2) \][/tex]
- For the denominator [tex]\(2p^3 + 16p^2\)[/tex]:
[tex]\[ 2p^3 + 16p^2 = 2p^2(p + 8) \][/tex]
2. Rewrite the given expression with the factored terms:
[tex]\[ \frac{4p(p + 8)}{p - 2} \cdot \frac{(p + 3)(p - 2)}{2p^2(p + 8)} \][/tex]
3. Cancel out common factors:
- The term [tex]\((p - 2)\)[/tex] appears in both the numerator and the denominator and thus can be cancelled out.
- The term [tex]\((p + 8)\)[/tex] also appears in both the numerator and the denominator and thus can be cancelled out.
[tex]\[ \frac{4p \cancel{(p + 8)}}{\cancel{p - 2}} \cdot \frac{(p + 3)\cancel{(p - 2)}}{2p^2 \cancel{(p + 8)}} = \frac{4p}{1} \cdot \frac{(p + 3)}{2p^2} \][/tex]
4. Combine and simplify the remaining terms:
[tex]\[ \frac{4p(p + 3)}{2p^2} = \frac{4(p + 3)}{2p} = \frac{2(p + 3)}{p} \][/tex]
5. Final simplified expression:
This shows that the given expression simplifies to:
[tex]\[ \boxed{\frac{2(p+3)}{p}} \][/tex]
After following these steps, we find that the expression equal to [tex]\(\frac{4p^2 + 32p}{p-2} \cdot \frac{p^2 + p - 6}{2p^3 + 16p^2}\)[/tex] is [tex]\(\frac{2(p+3)}{p}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.