Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which matrix multiplications are possible, we need to check the compatibility of the dimensions of the matrices involved. Specifically, matrix multiplication is possible when the number of columns in the first matrix matches the number of rows in the second matrix.
1. First Matrix Multiplication:
[tex]\[ \left[\begin{array}{ll}0 & 3\end{array}\right] \times \left[\begin{array}{ll}1 & -4\end{array}\right] \][/tex]
The first matrix is [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns) and the second matrix is also [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns). Since the number of columns in the first matrix (2) does not match the number of rows in the second matrix (1), this matrix multiplication is not possible. So, the result for this multiplication is 0.
2. Second Matrix Multiplication:
[tex]\[ \left[\begin{array}{c}3 \\ -2\end{array}\right] \times \left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right] \][/tex]
The first matrix is [tex]\( 2 \times 1 \)[/tex] (2 rows, 1 column) and the second matrix is [tex]\( 2 \times 2 \)[/tex] (2 rows, 2 columns). The number of columns in the first matrix (1) does not match the number of rows in the second matrix (2), so this matrix multiplication is not possible. So, the result for this multiplication is 0.
3. Third Matrix Multiplication:
[tex]\[ \left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times \left[\begin{array}{ll}3 & 0\end{array}\right] \][/tex]
The first matrix is [tex]\( 2 \times 2 \)[/tex] (2 rows, 2 columns) and the second matrix is [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns). The number of columns in the first matrix (2) does not match the number of rows in the second matrix (1), so this matrix multiplication is not possible. So, the result for this multiplication is 0.
4. Fourth Matrix Multiplication:
[tex]\[ \left[\begin{array}{c}1 \\ -1\end{array}\right] \times \left[\begin{array}{ll}0 & 4\end{array}\right] \][/tex]
The first matrix is [tex]\( 2 \times 1 \)[/tex] (2 rows, 1 column) and the second matrix is [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns). The number of columns in the first matrix (1) matches the number of rows in the second matrix (1), so this matrix multiplication is possible. Thus, the result for this multiplication is 1.
Combining all the results, the possible matrix multiplications are as follows:
[tex]\[ (0, 0, 0, 1) \][/tex]
This means that among the given matrix multiplications, only the last one is possible.
1. First Matrix Multiplication:
[tex]\[ \left[\begin{array}{ll}0 & 3\end{array}\right] \times \left[\begin{array}{ll}1 & -4\end{array}\right] \][/tex]
The first matrix is [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns) and the second matrix is also [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns). Since the number of columns in the first matrix (2) does not match the number of rows in the second matrix (1), this matrix multiplication is not possible. So, the result for this multiplication is 0.
2. Second Matrix Multiplication:
[tex]\[ \left[\begin{array}{c}3 \\ -2\end{array}\right] \times \left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right] \][/tex]
The first matrix is [tex]\( 2 \times 1 \)[/tex] (2 rows, 1 column) and the second matrix is [tex]\( 2 \times 2 \)[/tex] (2 rows, 2 columns). The number of columns in the first matrix (1) does not match the number of rows in the second matrix (2), so this matrix multiplication is not possible. So, the result for this multiplication is 0.
3. Third Matrix Multiplication:
[tex]\[ \left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times \left[\begin{array}{ll}3 & 0\end{array}\right] \][/tex]
The first matrix is [tex]\( 2 \times 2 \)[/tex] (2 rows, 2 columns) and the second matrix is [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns). The number of columns in the first matrix (2) does not match the number of rows in the second matrix (1), so this matrix multiplication is not possible. So, the result for this multiplication is 0.
4. Fourth Matrix Multiplication:
[tex]\[ \left[\begin{array}{c}1 \\ -1\end{array}\right] \times \left[\begin{array}{ll}0 & 4\end{array}\right] \][/tex]
The first matrix is [tex]\( 2 \times 1 \)[/tex] (2 rows, 1 column) and the second matrix is [tex]\( 1 \times 2 \)[/tex] (1 row, 2 columns). The number of columns in the first matrix (1) matches the number of rows in the second matrix (1), so this matrix multiplication is possible. Thus, the result for this multiplication is 1.
Combining all the results, the possible matrix multiplications are as follows:
[tex]\[ (0, 0, 0, 1) \][/tex]
This means that among the given matrix multiplications, only the last one is possible.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.