Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Given [tex]\( f(x) = \frac{x}{5} + 3 \)[/tex], which of the following is the inverse of [tex]\( f(x) \)[/tex]?

A. [tex]\( f^{-1}(x) = \frac{5(x+3)}{3} \)[/tex]
B. [tex]\( f^{-1}(x) = \frac{3(x+3)}{5} \)[/tex]
C. [tex]\( f^{-1}(x) = \frac{5(x-3)}{3} \)[/tex]
D. [tex]\( f^{-1}(x) = \frac{3(x-3)}{5} \)[/tex]


Sagot :

To find the inverse of the function [tex]\( f(x) = \frac{x}{5} + 3 \)[/tex], we need to follow these steps:

1. Start by replacing [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x}{5} + 3 \][/tex]

2. Next, solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].

Subtract 3 from both sides:
[tex]\[ y - 3 = \frac{x}{5} \][/tex]

3. Multiply both sides by 5 to isolate [tex]\( x \)[/tex]:
[tex]\[ 5(y - 3) = x \][/tex]

4. Finally, replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex], as we are expressing the inverse function:
[tex]\[ f^{-1}(x) = 5(x - 3) \][/tex]

Thus, the inverse function is:
[tex]\[ f^{-1}(x) = 5(x - 3) \][/tex]

Comparing with the given options, we find that answer C matches.

So, the correct answer is:
[tex]\[ \boxed{C} \][/tex]