Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the mean distance from Jupiter to the center of the Sun, we use Kepler’s third law of planetary motion, which can be expressed as:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.
Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].
Let's proceed with the solution step-by-step:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:
[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]
3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]
4. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]
5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]
Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:
[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]
So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.
Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].
Let's proceed with the solution step-by-step:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:
[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]
3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]
4. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]
5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]
Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:
[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]
So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.