Answered

Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Select the correct answer:

The planet Jupiter revolves around the Sun in a period of about 12 years ([tex]$3.79 \times 10^8$[/tex] seconds). What is its mean distance from the center of the Sun? The mass of the Sun is [tex]$1.99 \times 10^{30}$[/tex] kilograms.

Given:
[tex]\[ G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \][/tex]
[tex]\[ T^2 = \frac{4 \pi^2}{GM} r^3 \][/tex]
[tex]\[ \pi = 3.14 \][/tex]

A. [tex]$1.1 \times 10^{11}$[/tex] meters
B. [tex]$1.5 \times 10^{11}$[/tex] meters
C. [tex]$2.3 \times 10^{11}$[/tex] meters
D. [tex]$5.8 \times 10^{11}$[/tex] meters
E. [tex]$7.8 \times 10^{11}$[/tex] meters


Sagot :

To determine the mean distance from Jupiter to the center of the Sun, we use Kepler’s third law of planetary motion, which can be expressed as:

[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]

where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.

Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].

Let's proceed with the solution step-by-step:

1. Calculate [tex]\( T^2 \)[/tex]:

[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]

2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:

[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]

3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:

[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]

4. Calculate [tex]\( r^3 \)[/tex]:

[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]

5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:

[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]

Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:

[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]

So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].