Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the mean distance from Jupiter to the center of the Sun, we use Kepler’s third law of planetary motion, which can be expressed as:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.
Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].
Let's proceed with the solution step-by-step:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:
[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]
3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]
4. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]
5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]
Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:
[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]
So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.
Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].
Let's proceed with the solution step-by-step:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:
[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]
3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]
4. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]
5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]
Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:
[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]
So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.