Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the mean distance from Jupiter to the center of the Sun, we use Kepler’s third law of planetary motion, which can be expressed as:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.
Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].
Let's proceed with the solution step-by-step:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:
[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]
3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]
4. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]
5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]
Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:
[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]
So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( r \)[/tex] is the mean distance from the planet to the Sun (semi-major axis of the orbit),
- [tex]\( \pi \)[/tex] is the mathematical constant pi.
Given data:
- Orbital period [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- Mass of the Sun [tex]\( M = 1.99 \times 10^{30} \)[/tex] kilograms,
- Gravitational constant [tex]\( G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \)[/tex],
- [tex]\( \pi = 3.14 \)[/tex].
Let's proceed with the solution step-by-step:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Calculate the numerator [tex]\( G \cdot M \cdot T^2 \)[/tex]:
[tex]\[ G \cdot M \cdot T^2 = 6.67 \times 10^{-11} \cdot 1.99 \times 10^{30} \cdot 1.43641 \times 10^{17} \][/tex]
[tex]\[ = 1.9065900853 \times 10^{37} \][/tex]
3. Calculate the denominator [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \pi^2 = 4 \times (3.14)^2 = 4 \times 9.8596 = 39.4384 \][/tex]
4. Calculate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{G \cdot M \cdot T^2}{4 \pi^2} = \frac{1.9065900853 \times 10^{37}}{39.4384} \][/tex]
[tex]\[ = 4.834349479948476 \times 10^{35} \][/tex]
5. Calculate [tex]\( r \)[/tex] by taking the cubic root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.834349479948476 \times 10^{35} \right)^{\frac{1}{3}} = 7.848367805377351 \times 10^{11} \text{ meters} \][/tex]
Comparing this calculated value with the given options, we find that the closest option to our calculated mean distance is:
[tex]\[ E. \ 7.8 \times 10^{11} \text{ meters} \][/tex]
So, the correct answer is [tex]\( \boxed{7.8 \times 10^{11}} \text{ meters} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.