Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\( x^3 - 3x^2 - 4 = \frac{1}{x-1} + 5 \)[/tex], we need to find the values of [tex]\( x \)[/tex] that satisfy this equation.
Here is the step-by-step solution:
1. Rewrite the equation into a single polynomial form:
The given equation is [tex]\( x^3 - 3x^2 - 4 = \frac{1}{x-1} + 5 \)[/tex].
2. Combine terms into a single equation:
To combine these terms into a single equation, express [tex]\( \frac{1}{x-1} + 5 \)[/tex] as a common fraction and a polynomial:
[tex]\[ \frac{1}{x-1} + 5 = \frac{1 + 5(x-1)}{x-1} = \frac{1 + 5x - 5}{x-1} = \frac{5x - 4}{x-1} \][/tex]
3. Form a common denominator and combine terms:
Multiply both sides by [tex]\( x-1 \)[/tex] to eliminate the fraction:
[tex]\[ (x-1)\left(x^3 - 3x^2 - 4\right) = 5x - 4 \][/tex]
Expand and simplify:
[tex]\[ x^4 - x^3 - 3x^3 + 3x^2 - 4x + 4 = 5x - 4 \][/tex]
Combine like terms, bringing everything to one side:
[tex]\[ x^4 - 4x^3 + 3x^2 - 9x + 8 = 0 \][/tex]
4. Solve the polynomial equation:
Solving [tex]\( x^4 - 4x^3 + 3x^2 - 9x + 8 = 0 \)[/tex] for the roots gives us the solutions (approximately):
[tex]\[ x \approx 3.6888, \quad -0.2977 - 1.5176i, \quad -0.2977 + 1.5176i, \quad 0.9067 \][/tex]
5. Extract the real solutions:
The approximate real solutions are:
[tex]\[ x \approx 3.6888 \quad \text{and} \quad x \approx 0.9067 \][/tex]
Therefore, the correct answers to the equation [tex]\( x^3 - 3x^2 - 4 = \frac{1}{x-1} + 5 \)[/tex] are:
[tex]\[ x = 3.6888 \quad \text{and} \quad x = 0.9067. \][/tex]
Here is the step-by-step solution:
1. Rewrite the equation into a single polynomial form:
The given equation is [tex]\( x^3 - 3x^2 - 4 = \frac{1}{x-1} + 5 \)[/tex].
2. Combine terms into a single equation:
To combine these terms into a single equation, express [tex]\( \frac{1}{x-1} + 5 \)[/tex] as a common fraction and a polynomial:
[tex]\[ \frac{1}{x-1} + 5 = \frac{1 + 5(x-1)}{x-1} = \frac{1 + 5x - 5}{x-1} = \frac{5x - 4}{x-1} \][/tex]
3. Form a common denominator and combine terms:
Multiply both sides by [tex]\( x-1 \)[/tex] to eliminate the fraction:
[tex]\[ (x-1)\left(x^3 - 3x^2 - 4\right) = 5x - 4 \][/tex]
Expand and simplify:
[tex]\[ x^4 - x^3 - 3x^3 + 3x^2 - 4x + 4 = 5x - 4 \][/tex]
Combine like terms, bringing everything to one side:
[tex]\[ x^4 - 4x^3 + 3x^2 - 9x + 8 = 0 \][/tex]
4. Solve the polynomial equation:
Solving [tex]\( x^4 - 4x^3 + 3x^2 - 9x + 8 = 0 \)[/tex] for the roots gives us the solutions (approximately):
[tex]\[ x \approx 3.6888, \quad -0.2977 - 1.5176i, \quad -0.2977 + 1.5176i, \quad 0.9067 \][/tex]
5. Extract the real solutions:
The approximate real solutions are:
[tex]\[ x \approx 3.6888 \quad \text{and} \quad x \approx 0.9067 \][/tex]
Therefore, the correct answers to the equation [tex]\( x^3 - 3x^2 - 4 = \frac{1}{x-1} + 5 \)[/tex] are:
[tex]\[ x = 3.6888 \quad \text{and} \quad x = 0.9067. \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.