Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem, we need to find the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] where [tex]\(S_n\)[/tex] is given by:
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.