Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem, we need to find the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] where [tex]\(S_n\)[/tex] is given by:
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]
Let's analyze the sum term-by-term.
### Step-by-Step Breakdown:
1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]
2. Simplify Each Sum Separately:
#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]
The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]
Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]
Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]
#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]
The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]
Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]
Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]
As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]
#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]
3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]
Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.