Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which value of [tex]\( t \)[/tex] makes the two matrices inverses of each other?

[tex]\[
\left[\begin{array}{cc}
-4 & 6 \\
3 & -4
\end{array}\right] + \left[\begin{array}{cc}
2 & 3 \\
1.5 & t
\end{array}\right]
\][/tex]

A. [tex]\(-3\)[/tex]

B. [tex]\(-2\)[/tex]

C. [tex]\(2\)[/tex]

D. [tex]\(3\)[/tex]


Sagot :

To determine which value of [tex]\( t \)[/tex] makes the two matrices inverses of each other, we need to check if their sum equals the identity matrix. The given matrices are:

[tex]\[ \begin{pmatrix} -4 & 6 \\ 3 & -4 \end{pmatrix} \][/tex]
and
[tex]\[ \begin{pmatrix} 2 & 3 \\ 1.5 & t \end{pmatrix}. \][/tex]

First, let's perform the addition of the two matrices:

[tex]\[ \begin{pmatrix} -4 & 6 \\ 3 & -4 \end{pmatrix} + \begin{pmatrix} 2 & 3 \\ 1.5 & t \end{pmatrix} = \begin{pmatrix} -4 + 2 & 6 + 3 \\ 3 + 1.5 & -4 + t \end{pmatrix} = \begin{pmatrix} -2 & 9 \\ 4.5 & t - 4 \end{pmatrix}. \][/tex]

For the matrices to be inverses of each other, their sum must be the identity matrix:

[tex]\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \][/tex]

Therefore, we need:

[tex]\[ \begin{pmatrix} -2 & 9 \\ 4.5 & t - 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \][/tex]

Let's equate the corresponding elements of the matrices:

1. [tex]\(-2 = 1\)[/tex]
2. [tex]\(9 = 0\)[/tex]
3. [tex]\(4.5 = 0\)[/tex]
4. [tex]\(t - 4 = 1\)[/tex]

From the first three equations, [tex]\(-2 = 1\)[/tex], [tex]\(9 = 0\)[/tex], and [tex]\(4.5 = 0\)[/tex], it's clear that no values of [tex]\( t \)[/tex] can satisfy these equations. Matrices inverses are only making sense if the entries match, which they do not.

Therefore, no value of [tex]\( t \)[/tex] makes the sum of the two given matrices equal to the identity matrix. Hence, none of the given values of [tex]\( t \)[/tex] ([tex]\(-3, -2, 2, 3\)[/tex]) will result in the matrices being inverses of each other.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.