At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\(4 e^{2+2 x}=x-3\)[/tex] by graphing, follow these steps:
1. Write a system of equations:
[tex]\[ \begin{cases} y = 4 e^{2+2 x} \\ y = x - 3 \end{cases} \][/tex]
2. Graph the system. Use a graphing calculator or graphing software to plot each equation:
- The first curve is [tex]\(y = 4 e^{2+2 x}\)[/tex]. This is an exponential function with a base of [tex]\(e\)[/tex], scaled by 4.
- The second line is [tex]\(y = x - 3\)[/tex]. This is a straight line with a slope of 1 and a y-intercept of -3.
3. Identify the solutions. The [tex]\(x\)[/tex]-coordinates of the points where the graphs of the equations intersect are the solutions to the original equation.
After graphing, you will find that the curves intersect at:
The equation [tex]\(4 e^{2+2 x}=x-3\)[/tex] has one solution: [tex]\(x \approx -2.03493\)[/tex].
Thus, the value of [tex]\(x\)[/tex] where the curves intersect, and hence the solution to the equation [tex]\(4 e^{2+2 x}=x-3\)[/tex], is approximately [tex]\(-2.03493\)[/tex].
1. Write a system of equations:
[tex]\[ \begin{cases} y = 4 e^{2+2 x} \\ y = x - 3 \end{cases} \][/tex]
2. Graph the system. Use a graphing calculator or graphing software to plot each equation:
- The first curve is [tex]\(y = 4 e^{2+2 x}\)[/tex]. This is an exponential function with a base of [tex]\(e\)[/tex], scaled by 4.
- The second line is [tex]\(y = x - 3\)[/tex]. This is a straight line with a slope of 1 and a y-intercept of -3.
3. Identify the solutions. The [tex]\(x\)[/tex]-coordinates of the points where the graphs of the equations intersect are the solutions to the original equation.
After graphing, you will find that the curves intersect at:
The equation [tex]\(4 e^{2+2 x}=x-3\)[/tex] has one solution: [tex]\(x \approx -2.03493\)[/tex].
Thus, the value of [tex]\(x\)[/tex] where the curves intersect, and hence the solution to the equation [tex]\(4 e^{2+2 x}=x-3\)[/tex], is approximately [tex]\(-2.03493\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.