Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's address the problem step-by-step.
### Problem Analysis
We need to determine the difference in sound levels between two positions related to an explosion:
1. A person directly below the explosion.
2. A person at a horizontal distance of 220 meters away.
### Sound Level Difference Formula
The difference in sound levels ([tex]\(\Delta \beta\)[/tex]) in decibels (dB) between two points at distances [tex]\(d_1\)[/tex] and [tex]\(d_2\)[/tex] from the sound source can be calculated using the formula:
[tex]\[ \Delta \beta = 20 \cdot \log_{10}\left(\frac{d_2}{d_1}\right) \][/tex]
### Given Values
- [tex]\(L = 220\)[/tex] meters (horizontal distance)
- [tex]\(d_1 = 1\)[/tex] meter (assuming a very close distance directly below the explosion)
- [tex]\(d_2 = 220\)[/tex] meters (the horizontal distance, given)
### Calculation
To find the difference in sound levels using the provided distances:
1. Substitute [tex]\(d_1 = 1\)[/tex] meter and [tex]\(d_2 = 220\)[/tex] meters into the formula:
[tex]\[ \Delta \beta = 20 \cdot \log_{10}(220 / 1) \][/tex]
2. Perform the logarithmic calculation and multiplication:
[tex]\[ \Delta \beta = 20 \cdot \log_{10}(220) \][/tex]
### Solution
The above steps produce the following result:
[tex]\[ \Delta \beta = 46.85 \text{ dB} \][/tex]
### Final Answer
The difference in sound levels is:
[tex]\[ \Delta \beta = 46.85 \text{ dB} \][/tex]
This expresses how much greater the sound level is for a person directly below the explosion compared to a person 220 meters away.
### Problem Analysis
We need to determine the difference in sound levels between two positions related to an explosion:
1. A person directly below the explosion.
2. A person at a horizontal distance of 220 meters away.
### Sound Level Difference Formula
The difference in sound levels ([tex]\(\Delta \beta\)[/tex]) in decibels (dB) between two points at distances [tex]\(d_1\)[/tex] and [tex]\(d_2\)[/tex] from the sound source can be calculated using the formula:
[tex]\[ \Delta \beta = 20 \cdot \log_{10}\left(\frac{d_2}{d_1}\right) \][/tex]
### Given Values
- [tex]\(L = 220\)[/tex] meters (horizontal distance)
- [tex]\(d_1 = 1\)[/tex] meter (assuming a very close distance directly below the explosion)
- [tex]\(d_2 = 220\)[/tex] meters (the horizontal distance, given)
### Calculation
To find the difference in sound levels using the provided distances:
1. Substitute [tex]\(d_1 = 1\)[/tex] meter and [tex]\(d_2 = 220\)[/tex] meters into the formula:
[tex]\[ \Delta \beta = 20 \cdot \log_{10}(220 / 1) \][/tex]
2. Perform the logarithmic calculation and multiplication:
[tex]\[ \Delta \beta = 20 \cdot \log_{10}(220) \][/tex]
### Solution
The above steps produce the following result:
[tex]\[ \Delta \beta = 46.85 \text{ dB} \][/tex]
### Final Answer
The difference in sound levels is:
[tex]\[ \Delta \beta = 46.85 \text{ dB} \][/tex]
This expresses how much greater the sound level is for a person directly below the explosion compared to a person 220 meters away.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.